|
王怡心,2016,舞弊的肇因與省思, 會計研究月刊 (371):40-46 王譯萱,2013,運用 XBRL 通用連結與文字探勘技術於財報資訊與附註資訊之整合 伍中信、 陳玲琳,2015,基於舞弊三角理論對農業上市公司財務報告舞弊的識別研究,財會月刊 (下) (5):I0003-I0007. 許文靜、王君彩、 梁靜. 2017,博元投資會計舞弊行為及根源探究,中國註冊會計師 (1):117-120. 吳漢瑞,2009,應用文字探勘技術於臺灣上市公司重大訊息對股價影響之研究. 政治大學資訊管理研究所學位論文:1-59. 張利、胡華夏、餘躍洋,2015,基於舞弊三角理論的財務舞弊案例研究,財會月刊 (下) (3):69-72. 李花果,2017,“欣泰電氣” 財務舞弊案例研究,財會通訊 10:002. 李慕萱、林欣瑾、徐銘甫,2014,Decision Making by a Novel Ensemble Mechanism,多國籍企業管理評論 8 (2):151-180. 周芳,2010,應用資料採擷技術識別財務報表舞弊的方法研究,財務與金融 2010 (3):39-43. 林瑟凱、張晉瑞,2015,協力廠商支付環境下電子商務之舞弊查核,會計研究月刊 (356):46-51. 林嬋娟、張哲嘉,2009,董監事異常變動、家族企業與企業舞弊之關聯性,會計評論 (48):1-33. 姚東、餘鵬翼,2017,上市公司關聯方交易舞弊行為研究--以舜天船舶為例,國際商務財會 (5):39-43. 段莉芳,2015,上市公司財務舞弊特徵分析,財會通訊: 上 (12):31-33. 孫嘉明、邱靜宜、林宜隆,2017,持續性稽核技術整合架構-以主計資訊系統為例,電腦稽核 (35):80-95. 陳雪如、林琦珍、柯佳玲. 2009,自願性資訊揭露對財務報導舞弊偵測之研究,會計與公司治理 6 (2):1-29. 黃波,2017,從欣泰電器舞弊探究風險導向審計策略——基於舞弊三角理論視角. 財會學習 (4):119-121. 黃進敏,2017,淺談企業財務報表舞弊及審計對策,會計師 (11):53-54. 謝林海、羅佳、胡曉潔,2017,國有與非國有企業的財務舞弊手段及外部監管——基於 2006——2016 年證監會處罰公告,商業會計 (7):43-46. 韓麗榮、胡瑋佳、高瑜彬,2015,資料安全性:中國 A 股上市公司異常會計資訊與財務報告舞弊風險的識別,河南社會科學 (7):46-51. 葉清江、齊德彰、林欣瑾. 2008,企業財務報表舞弊偵測之研究,Asian Journal of Management and Humanity Sciences 3 (1-4):15-30. 詹素嬌、陳美嬪, 2014,企業舞弊及有效之預防,電腦稽核 (29):102-108. 劉若蘭、李旻育,2017,董事會政治關聯、客戶重要性對財務報導舞弊之影響,中山管理評論 25 (2):367-398. 鄭嘉瑋,2006,兩岸舞弊案例分析與舞弊因數之探討,中興大學會計學研究所學位論文:1-54. 盧鈺欣、林昱成、林育伶,2016,資料探勘技術在繼續經營疑慮意見診斷模型之應用,會計評論 (63):77-108. 蘇柏翰,2016,運用資料探勘技術偵測財務報表舞弊-以台灣上市(櫃)公司為例,會計學系, 成功大學. Albrecht, W. S., C. C. Albrecht, and C. O. Albrecht. 2004. Fraud and corporate executives: Agency, stewardship and broken trust. Journal of Forensic Accounting 5 (1):109-130. Ariandi, I. 2017. The effect of internal control and anti-fraud awareness on fraud prevention (A survey on inter-governmental organizations). Journal of Economics, Business & Accountancy Ventura 20 (1):113-124. Benson, M. L., T. D. Madensen, and J. E. Eck. 2009. White-collar crime from an opportunity perspective. The criminology of white-collar crime 3:175-193. Cheng, M.-S. 2016. 利用資料探勘技術建立破產預測模型, National Central University. Dimitrijevic, D., V. Milovanovic, and V. Stancic. 2015. The role of a company’s internal control system in fraud prevention. e-Finanse 11 (3):34-44. Fawcett, T. 2006. An introduction to ROC analysis. Pattern recognition letters 27 (8):861-874. Green, B. P., and J. H. Choi. 1997. Assessing the risk of management fraud through neural network technology. Auditing 16 (1):14. Howe, M. A., and C. A. Malgwi. 2006. Playing the ponies: A $5 million embezzlement case. Journal of Education for Business 82 (1):27-33. Kirkos, E., C. Spathis, and Y. Manolopoulos. 2007. Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications 32 (4):995-1003. Kotsiantis, S., E. Koumanakos, D. Tzelepis, and V. Tampakas. 2006. Forecasting fraudulent financial statements using data mining. International Journal of Computational Intelligence 3 (2):104-110. Lin, J. W., M. I. Hwang, and J. D. Becker. 2003. A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal 18 (8):657-665. Lou, Y.-I., and M.-L. Wang. 2011. Fraud risk factor of the fraud triangle assessing the likelihood of fraudulent financial reporting. Journal of Business & Economics Research (JBER) 7 (2). Murphy, P. R. 2012. Attitude, Machiavellianism and the rationalization of misreporting. Accounting, Organizations and Society 37 (4):242-259. Raval, K. M. 2012. Data Mining Techniques. International Journal of Advanced Research in Computer Science and Software Engineering 2 (10). Ravisankar, P., V. Ravi, G. R. Rao, and I. Bose. 2011. Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems 50 (2):491-500. Stalebrink, O. J., and J. F. Sacco. 2007. Rationalization of financial statement fraud in government: An Austrian perspective. Critical Perspectives on Accounting 18 (4):489-507. Wolfe, D. T., and D. R. Hermanson. 2004. The fraud diamond: Considering the four elements of fraud. The CPA Journal 74 (12):38. Zhang, Z. M., J. J. Salerno, and P. S. Yu. 2003. Applying data mining in investigating money laundering crimes. Paper read at Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining.
|