(3.235.108.188) 您好!臺灣時間:2021/03/03 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭騵竣
研究生(外文):Yuan-Chun Kuo
論文名稱:小尺寸新型WLAN天線設計
論文名稱(外文):Small Size New WLAN Antenna Design
指導教授:徐文修
指導教授(外文):Wen-Shiu Hsu
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:電腦與通訊系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:34
中文關鍵詞:WLANMonopole天線設計
外文關鍵詞:antenna designMonopoleWLAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本論文提出兩種 WLAN 天線設計,以 FR4 小尺寸單面電路板及 FR4 小尺寸雙面電路板為基材各設計出一種天線,兩種天線設計都是藉由改變天線的結構體來調整頻率及頻寬,來達到我們需要的模態。第一種天線設計,以 FR4 小尺寸單面電路板為基材,主要是由一個單極天線改良而成的天線設計,以藉由結構體的長度跟位置來控制高低頻,進而有效激發出WLAN所需操作頻帶為: WLAN 2.4 (2.4 - 2.48 GHz) 、WLAN 5.2/5.8 (5.15 - 5.85 GHz) ,且使其主要的頻率點低於-10 dB以下。
第二種天線設計,本設計以FR4小尺寸雙面電路板為基材,設計是以單極天線來設計,我們將其的構造改變使此天線的操作頻帶涵蓋為:WLAN 2.4 (2.4 - 2.48 GHz) 、 WLAN 5.2/5.8 (5.15 - 5.85 GHz) 等操作頻帶,再做出一些變數上的探討來找出最佳化的數據,再調整出符合我們所需要的模態。
This paper presents two kinds of WLAN antenna design, which use FR4 small size single-sided circuit board and FR4 small size double-sided circuit board as the base material to design an antenna, those antenna designs change the antenna structure to adjust the frequency and bandwidth, to achieve the modality that we need. For the first antenna design, FR4 small size single-sided circuit board as the substrate, mainly by a monopole antenna modified antenna design to structure by the length and position to control high and low frequency, and then effectively stimulate. The required operating frequency bands for WLAN are WLAN 2.4 (2.4 - 2.48 GHz) and WLAN 5.2 / 5.8 (5.15 - 5.85 GHz) with a primary frequency point below -10 dB.

For the second antenna design, based on a FR4 small-size, double-sided circuit board, was designed with a monopole antenna and we modified the antenna configuration to cover the operating frequency band of WLAN2.4 (2.4 - 2.48 GHz), WLAN5.2 / 5.8 (5.15 - 5.85 GHz) and other operating frequency bands, and then make a number of variables on the study to find the best data, and then adjust to meet our needs modalities.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 v
第一章 緒論 1
1.1 研究動機 3
1.2 文獻探討 3
1.3 既有技術及參考 4
1.4 內容提要 6
第二章 小尺寸共面波導WLAN天線設計改良 7
2.1 概述 7
2.2 天線設計 8
2.3參數探討 9
2.4 結果與討論 18
第三章 小尺寸微帶線饋入WLAN天線設計改良 19
3.1 概述 19
3.2 天線設計 20
3.3 參數探討 21
3.4 結果與討論 30
第四章 結論 31
參考文獻 32

圖目錄
圖1 第二章節天線參考天線的天線結構圖 4
圖2 第三章節天線參考天線的天線結構圖 5
圖3 第二章節天線小尺寸共面波導WLAN天線結構圖 8
圖4 第二章節天線小尺寸共面波導WLAN實際天線結構圖 8
圖5 第二章節天線的反射係數的實測值與模擬值 9
圖6 第二章節天線L1長度對反射係數的影響(模擬值) 10
圖7 第二章節天線L2長度對反射係數的影響(模擬值) 11
圖8 第二章節天線W1長度對反射係數的影響(模擬值) 12
圖9 第二章節天線頻率點2442 MHz的3D場形圖 13
圖10 第二章節天線頻率點5220 MHz的3D場形圖 13
圖11 第二章節天線頻率點5805 MHz的3D場形圖 13
圖12 第二章節天線WLAN 2.4 (2.4 - 2.48 GHz) 操作頻帶所產生的電流共振模態分布變化 14
圖13 第二章節天線WLAN 5.2/5.8 (5.15 - 5.85 GHz)操作頻帶所產生的電流共振模態分布變化 15
圖14 第二章節天線在WLAN 2.4 (2.4 - 2.48 GHz) 頻段測量所得的天線增益與輻射效率 16
圖15 第二章節天線在WLAN 5.2/5.8 (5.15 - 5.85 GHz) 頻段測量所得的天線增益與輻射效率 17
圖16 第三章節天線小尺寸微帶線饋入WLAN天線結構圖 20
圖17 第三章節天線小尺寸微帶線饋入WLAN實體天線結構圖 20
圖18 第三章節天線的反射係數的實測值與模擬值 21
圖19 第三章節天線L1長度對反射係數的影響(模擬值) 22
圖20 第三章節天線L2長度對反射係數的影響(模擬值) 23
圖21 第三章節天線W1長度對反射係數的影響(模擬值) 24
圖22 第三章節天線頻率點2442 MHz的3D場形圖 25
圖23 第三章節天線頻率點5220 MHz的3D場形圖 25
圖24 第三章節天線頻率點5805 MHz的3D場形圖 25
圖25 第三章節天線WLAN 2.4 (2.4 - 2.48 GHz) 操作頻帶所產生的電流共振模態分布變化 26
圖26 第三章節天線WLAN 5.2/5.8 (5.15 - 5.85 GHz)操作頻帶所產生的電流共振模態分布變化 27
圖27 第三章節天線在WLAN 2.4 (2.4 - 2.48 GHz) 頻段測量所得的天線增益與輻射效率 28
圖28 第三章節天線在WLAN 5.2/5.8 (5.15 - 5.85 GHz)頻段測量所得的天線增益與輻射效率 29
[1].WorldWide interoperability for microwave access forum or WiMAX forum, Available at: http:www.wimaxfroum.org.
[2].IEEE 802.16 Working Group on broadband wireless access standards, Available at: UUhttp://grouper.ieee.org/groups/802/16/index.htmlU.
[3].W.S. Chen and Y.H. Yu, Compact design of T-type monopole antenna with asymmetrical ground plane for WLAN/WiMAX appli- cations, Microwave Opt Technol Lett 50 (2008), 515–519.
[4].S.C. Haimoool and K.L. Chung, CPW-fed mirrored-L monopole antenna with distinct triple bands for WiFi and WiMAX application, Electron Lett 45 (2009), 928–929.
[5].J.F. Huang, M.T. Wu, and J.Y. Wen, A compact triple band antenna design for UMTS, WLAN and WiMAX applications, Microwave Opt Technol Lett 51 (2009), 2207–2212.
[6].Q.Y. Zhang and Q.X. Chu, Triple band dual rectangular ring printed monopole antenna for WLAN/WiMAX applications, Microwave Opt Technol Lett 51 (2009), 2845–2848.
[7].Z.Y. Liu, Y.Z. Yin, S.F. Zheng, W. Hu, and L.H. Wen, A compact CPW-fed monopole antenna with a U-shaped strip and a pair of L slits ground plane for WLAN and WiMAX applications, Prog Elec- tromagn Res Lett 16 (2010), 11–19.
[8].W. Hu, Y.Z. Yin, P. Fei, and X. Yang, Compact triband square slot antenna with symmetrical L strip for WLAN/WiMAX applications, IEEE Antenna Wireless Propag Lett 10 (2011), 462–465.
[9].L.H. Ye and Q.X. Chu, Compact dual wideband antenna for WiMAX/WLAN applications, Microwave Opt Technol Lett 52 (2010), 1228–1231.
[10].H.W. Liu and C.H. Ku, Novel planar triple band monopole antenna for WiMAX/WLAN applications, Microwave Opt Technol Lett 52 (2010), 2405–2408.
[11].K. Yang, H. Wang, Z. Lei, Y. Xie, and H. Lai, CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications, Electron Lett 47 (2011), 685–686.
[12].C.M. Li, K. Wang, and C.K. Chen, Small triband monopole antenna for WiMAX /WLAN applications, J Electromagn Waves Appl 25 (2011), 1297–1307.
[13].P. L. Shu and Q.Y. Feng, Compact triband monopole antenna with a parasitic E-shaped strip for WLAN/WiMAX applications, Prog Elec- tromagn Res C 32 (2012), 53–63.

[14].X.Q. Zhang, Y.C. Jiao, and W.H. Wang, Miniature triple band CPW-fed monopole antenna for WLAN and WiMAX applications, Prog Electromagn Res Lett 31 (2012), 97–105.
[15].K. He, R.X. Wang, Y.F. Wang, and B.H. Sun, Compact tri-band claw shaped monopole antenna for WLAN/WiMAX applications, J Electromagn Waves Appl 25 (2011), 869–877.
[16].H.Q. Zhai, Z.H. Ma, Y. Han, and C.H. Liang, A compact printed antenna for triple band WLAN/WiMAX applications, IEEE Antenna Wireless Propag Lett 12 (2013), 65–68.
[17].J. Pei, A. Wang, and W. Leng, A novel arc shaped printed antenna for WLAN applications, Appl Mech Mater 130–134 (2012), 4006– 4010.
[18].J.H. Lu and C.H. Yeh, Planar broadband arc-shaped monopole antenna for UWB system, IEEE Trans Antenna Propag 60 (2012), 3091–3095.
[19].M. Chongcheawchamnan, K. Meelarpkit, S. Julrat, C. Phongchareonpanich, and M. Krairiksh, Extending bandwidth of the CPW-fed monopole antenna using circular arc structure, Microwave Opt Technol Lett 54 (2012), 1412–1415.
[20].C. Wang, Z.H. Yan, and S. Li, Compact ultra wideband CPW-fed fan shaped antenna with dual band notched using arc shaped slots, Microwave Opt Technol Lett 55 (2013), 368–371.
[21].Ansoft High Frequency Structure Simulator (HFSS) Version 10.0, Ansoft Corporation, 2005.
[22].H.Q. Zhai, Z.H. Ma, Y. Han, and C.H. Liang, A compact printed antenna for triple-band WLAN/WiMAX applications, IEEE Anten- nas Wireless Propag Lett 12 (2013), 65–68.
[23].T. Zhang, R.L. Li, G.P. Jin, G. Wei, and M. Tentzeris, A novel mul- tiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices, IEEE Trans Antennas Propag 59 (2011), 4209–4214.
[24].Y. Li, Z.J. Zhang, J.F. Zheng, and Z.F. Fen, Compact heptaband reconfigurable loop antenna for mobile handset, IEEE Antennas Wireless Propag Lett 10 (2011), 1162–1165.
[25].D.M. Elsheakh and E.A. Abdallah, Compact multiband multifolded- slot antenna loaded with printed-IFA, IEEE Antennas Wireless Propag Lett 11 (2012), 1478–1481.
[26].W.C. Liu, C.M. Wu, and Y. Dai, Design of triple-frequency micro- strip-fed monopole antenna using defected ground structure, IEEE Trans Antennas Propag 59 (2011), 2457–2463.
[27].S.C. Basaran, U. Olgun, and K. Sertel, Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications, Electron Lett 49 (2013), 636–638.
[28].S.L. Ma and J.S. Row, Design of single-feed dual-frequency patch antenna for GPS and WLAN applications, IEEE Trans Antennas Propag 59 (2011), 3433–3436
[29].H.S. Tae, K.S. Oh, W.I. Son, W.G. Lim, and J.W. Yu, Design of compact dual-band quadruple inverted-F/L antenna for GPS L1/L2 band, IEEE Trans Antennas Propag 61 (2013), 2276–2279
[30].. Pathak, S. Thornwall, M. Krier, S. Rowson, G. Poilasne, and L. Desclos, Mobile handset system performance comparison of a line- arly polarized GPS internal antenna with a circularly polarized antenna, In: Proceedings of IEEE Antennas and Propagation Soceity International Symposium, Columbus, OH, 2003, pp. 666–669
[31].R.L. Li, B. Pan, J. Laskar, and M.M. Tentzeris, A compact broad- band planar antenna for GPS, DCS-1800, IMT-2000, and WLAN applications, IEEE Antennas Wireless Propag Lett 6 (2007), 25–27
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔