跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李凱軒
研究生(外文):Li, Kai-Hsuan
論文名稱:拋棄式光雙折材料在流體濃度感測器的開發與應用
論文名稱(外文):Development and Application of Disposable Birefringence Material in Fluidic Liquid Concentration Sensor
指導教授:涂瑞清
指導教授(外文):Twu, Ruey-Ching
口試委員:莊文魁邱逸仁
口試委員(外文):Ricky W. ChuangChiu, Yi-Jen
口試日期:2018-07-12
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:拋棄式光雙折感測器流體濃度監測外差干涉儀
外文關鍵詞:Birefringent PlateDisposable Fluid SensorHeterodyne Interferometer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是研究光雙折平板在角度、微位移及液體折射率感測器之應用與開發,並探討雙折材料在惡劣環境(溫度變化、腐蝕性液體)中所受到的影響,最終以非接觸、拋棄式雙折感測器應用於流體監測系統。在量測系統上,以商用電光調制器進行相位調制,並以共路徑外差干涉量測系統,搭配鎖相放大器之相位偵測,作為待測物理量之變化監測。
當一正交極化光,斜向入射進入雙折材料時,因材料折射率不同而產生光程差,進而產生正交極化相位差。利用相關的公式,可以透過數學模擬,探討KTP、BBO、PET等三種不同雙折材料,在入射角度及外在環境介質折射率變動下的相位變化及其敏感度。根據此特性,成功設計及製作一複合式位移感測器,及搭配一透明的流體容器,當注入流體濃度改變時,會造成流體折射率變化下之光束偏移,就可以透過此複合式位移感測器,由偵測相位之變動來反推流體濃度之變動。
再來,運用廉價的PET雙折材料,並提出以三角流體盒架構,初步驗證可作為可拋式的感測單元。除了比較不同厚度PET之效果,也針對不同貼合方式研究其量測穩定性。為增進量測敏感度,也提出以三稜鏡貼合之方式,克服因全反射效應下入射角度之限制,因此,在增加入射角之下,也大幅提高折射率量測之敏感度與解析度。
透過感測器設計實驗結果驗證,已成功開發出可拋性的流體濃度感測器,同時也根據不同的實驗架構,探討其對於不同液體濃度量測解析度之影響,對於後續的應用也有更深入的討論。

This dissertation focuses on the application and development of optical birefringent plates in angle, micro-displacement, and liquid refractive index sensors. The impacts of the birefringent materials in harsh environments (temperature changes, corrosive liquids) are studied. Finally, non-contact, disposable birefringent sensors were successfully applied in the fluid monitoring systems. On the measurement system, a commercial electro-optic modulator was used for phase modulation in a common-path heterodyne interferometer. The phase information is measured by a lock-in amplifier, and the physical quantity under test is obtained through the measured phase changes.
When an orthogonally polarized light enters the birefringent plates obliquely, an optical path difference between two orthogonal polarizations occurs due to the difference in refractive index of the material. At the same time, a phase delay is generated in the two orthogonal polarizations. According to the related formulas and mathematical simulations, three different birefringent materials such as KTP, BBO, and PET were explored systematically to evaluate the dependence of the phase change and sensitivity on both the incident angle and the refractive index of environmental medium. Based on these characteristics, the design and fabrication of the compact displacement sensor (CDS) is achievable. When the fluid passes through a transparent container, the displacement of the probe beam is dependent on the refractive index change of liquids due to the change of the injected fluid concentrations. The CDS can be used to detect the displacement caused by the change of fluid concentrations. The measured phase can be used to decide the fluid concentrations by the relations between the displacement and liquid concentration in the CDS.
Moreover, the use of inexpensive PET attached on the triangular container has been validated preliminary as a disposable sensing unit. In addition to comparing the effects of different thicknesses of PET, the measurement stability was also studied for different attached methods. In order to increase the sensitivity of measurement, it is also proposed to adopt a prism coupling to overcome the limitation of the incident angle due to the total reflection effect. Therefore, the sensitivity and resolution of the refractive index measurement are also greatly improved under the increase of the incident angle.
We have successfully developed a disposable fluid sensor. As a word, we also discuss the applications of various structures under different concentration resolutions.

摘要 I

Abstract II

致謝 IV

目錄 V

表目錄 V

圖目錄 VI

第一章 緒論 1

1.1 研究背景 1

1.2 文獻回顧 2

1.2.1 接觸式溶液濃度量測 2

1.2.1(a) SPR相位偵測 2

1.2.1(b) TIR相位與位移偵測 3

1.2.2 非接觸式溶液濃度量測 5

1.2.2(a) SPR相位偵測 5

1.2.2(b) 光點位移偵測 5

1.2.2(c) 三角盒光點位移偵測 6

第二章 基本原理 8

2.1 磷酸氧鈦鉀晶體 8

2.2 偏硼酸鋇晶體 9

2.3 聚對苯二甲酸乙二酯 9

2.4 EOM相位調制外差干涉量測系統 10

2.5 相位解析原理 13

2.6 光雙折感測原理 16

2.7 光折變效應 17

第三章 雙折材料環境影響評估 19

3.1 抗酸性液體實驗 19

3.1.1 雙折晶體KTP 20

3.1.2 雙折材料PET 24

3.2 液體溫度影響實驗 26

3.2.1 KTP流體溫度變化 28

3.2.2 PET流體溫度變化 32

第四章 流體濃度感測器 33

4.1 複合式位移感測器 33

4.1.1 微位移量測 33

4.1.2 複合式(長方盒)流體濃度量測系統 35

4.1.3 複合式(三角盒)流體濃度量測系統 40

4.2 拋棄式PET感測器的模擬與量測 49

4.2.1 旋轉角模擬與量測 49

4.2.2 入射角度低於臨界角之量測 53

4.2.3 入射角度高於臨界角之量測 62

4.2.4 乙醇蒸發(波長633 nm) 70

4.2.5 乙醇蒸發(波長670nm) 72

第五章 結論與展望 75

參考文獻 77

[1] P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. V. Kabashin, “Phase-Sensitive Time-Modulated Surface Plasmon Resonance Polarimetry for Wide Dynamic Range Biosensing,” Opt. Express, Vol. 15, No. 4, pp. 1746–1754 (2007).

[2] S. Patskovsky, M. Meunier, and A. V. Kabashin, “Phase-Sensitive Silicon-Based Total Internal Reflection Sensor,” Opt. Express, Vol. 15, No. 19, pp. 12523–12528 (2007).

[3] Refractometer for Refractive Index and Brix, https://hannainst.com/hi96800/

[4] K. H. Chen, J. H. Chen, S. W. Kuo, T. T. Kuo, M. H. Lai, “Non-Contact Method for Measuring Solution Concentration Using Surface Plasmon Resonance Apparatus and Heterodyne Interferometery,” Opt. Communications, Vol. 283, No. 10, pp. 2182–2185 (2010).

[5] Hidam Kumarjit Singh, Deepanjan Sarkar, and Tulshi Bezboruah, “Non-Intrusive Technique for Measuring Refractive Index of Clear and Transparent Liquids,” IEEE Sensors Journal, Vol. 14, No. 2, pp. 313–314 (2014).

[6] V. Krishna, C. H. Fan, and J. P. Longtin, “Real-Time Precision Concentration Measurement for Flowing Liquid Solutions,” Review of Scientific Instruments, Vol. 71, No. 10, pp. 3864–3868 (2000).
[7] 薛嘉暐, “光學式旋轉角度量測系統,” 南台科技大學光電工程系研究所, 碩士論文 (2012).

[8] 吳旺聰, “外差干涉術在中央條紋法的應用與誤差分析,” 國立交通大學光電工程研究所, 博士論文(2011).

[9] 曾恆正, “共光程全反射外差干涉術之研究與應用,” 國立中央大學光電科學研究所, 碩士論文(2006).

[10] 鄭諭燦, “共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究,” 國立成功大學機械工程學研究所, 碩士論文(2005).

[11] 劉思敏,郭儒,許京軍, “光折變非線性光學及其應用,” 科學出版社, pp.106–107.

[12] 陳政宇, “光雙折感測器在流體監測之開發與應用,” 南台科技大學光電工程系研究所, 碩士論文(2016).

[13] Mukesh Upadhyay, “Behavior of Refractive Index of Water on Temperature,” AIJRSTEM, Vol. 16, No. 2291, pp.95–97 (2016).

[14] Arlee V. Smith, Jesse J. Smith, and Binh T. Do, “Thermo-Optic and Thermal Expansion Coefficients of RTP and KTP Crystals Over 300-350 K,” Cornell University Library, arXiv.org physics, 1607.03964.

[15] Jose Francisco Miras Domenegueti, Acacio A. Andrade, Vivane Pilla, and Sergio Carlos Zliio, “Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients with A Single Arm Double Interferometer, ” Opt. Express, Vol. 25, No. 1, pp. 313–319 (2017).

[16] 杜曉穎, “軟性光雙折感測器的開發與應用,” 南台科技大學光電工程系研究所, 碩士論文(2014).

[17] 陳冠珉, “流體光學感測系統,” 南台科技大學光電工程系研究所, 碩士論文(2014).

[18] Max M. Houck, Rebecca A. Huff, Preston C. Lowe, and Ronald E. Menold, “A New Type of Polyester Fiber,” Forensic Science Communications, Vol. 3, No. 3 (2001).

[19] Matthew B. Johnson, Martin E. Denker, Kristopher J. Derks, Timothy J. Hebrink, Richard J. Thompson, Robert D. Taylor, Matthew J. Michel, and Mark B. O’Neill, “Diffuse Reflective Polarizing Film with Orientable Polymer Blends,” U.S Patent Application Publication, No. US2006/0226562A1 (2006).

[20] 美國 EMC 線上濃度計 Electron Machine Corporation, http://www.electronmachine.com/pdf/Electron_Chemical.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top