|
1.行政院衛生福利部:衛生福利部統計處. 國人105年十大死亡原因. Available from: https://dep.mohw.gov.tw/DOS/np-1714-113.html. 2.Key, T.J., et al., The effect of diet on risk of cancer. Lancet, 2002. 360(9336): p. 861-8. 3.Tsugane, S., [Dietary factor and cancer risk--evidence from epidemiological studies]. Gan To Kagaku Ryoho, 2004. 31(6): p. 847-52. 4.Lynch, H.T., et al., Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer, 2008. 7(1): p. 27-39. 5.Hinnebusch, B.F., et al., The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr, 2002. 132(5): p. 1012-7. 6.Augenlicht, L.H., et al., Short chain fatty acids and colon cancer. J Nutr, 2002. 132(12): p. 3804S-3808S. 7.Hylla, S., et al., Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr, 1998. 67(1): p. 136-42. 8.Jenkins, D.J., et al., Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism, 2001. 50(4): p. 494-503. 9.Perrin, P., et al., Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut, 2001. 48(1): p. 53-61. 10.Vogelstein, B., et al., Genetic alterations during colorectal-tumor development. N Engl J Med, 1988. 319(9): p. 525-32. 11.America Joint Committee on Cancer, A., AJCC 7th Edition Cancer Staging Form. November 23, 2017. 12.Dudjak, L.A., Cancer metastasis. Semin Oncol Nurs, 1992. 8(1): p. 40-50. 13.Stamets, P., Growing gourmet and medicinal mushrooms. 1993: Berkeley, CA: Ten Speed Press. 14.Takama, F., Ninomiya, S., Yoda, R., Ishii, H. and Muraki, S., Parenchyma Cells, Chemical Components of Maitake Mushroom (Grifola fondosa S.F. Gray) Cultured Artificially, and Their Changes by Storage and Boiling. Mushroom Sci. , 1981. 11: p. 767-779. 15.Takama, F., Ninomiya, S., Yoda, R., Ishii, H. and Muraki, S., Parenchyma Cells, Chemical Components of Maitake Mushroom (Grifola fondosa S.F. Gray) Cultured Artificially, and Their Changes by Storage and Boiling. Mushroom Sci., 1981. 11: p. 767-779. 16.Cao, X.H., Yang, Q. W., Lu, M. F., Hou, L. H., Jin, Y. Y., Yuan, J., et al., Preparation And Anticoagulation Activity Of A Chemically Sulfated Polysaccharide (S-Gfb) Obtained From Grifola Frondosa. Journal of food biochemistry, 2010. 34: p. 1049-1060. 17.Adachi, K., et al., Blood pressure-lowering activity present in the fruit body of Grifola frondosa (maitake). I. Chem Pharm Bull (Tokyo), 1988. 36(3): p. 1000-6. 18.Jong, S.C. and J.M. Birmingham, The medicinal value of the mushroomGrifola. World J Microbiol Biotechnol, 1990. 6(3): p. 227-35. 19.Kawagishi, H., et al., Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim Biophys Acta, 1990. 1034(3): p. 247-52. 20.Horio, H. and M. Ohtsuru, Maitake (Grifola frondosa) improve glucose tolerance of experimental diabetic rats. J Nutr Sci Vitaminol (Tokyo), 2001. 47(1): p. 57-63. 21.Kubo, K., H. Aoki, and H. Nanba, Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I. Biol Pharm Bull, 1994. 17(8): p. 1106-10. 22.Kubo, K. and H. Nanba, The effect of maitake mushrooms on liver and serum lipids. Altern Ther Health Med, 1996. 2(5): p. 62-6. 23.Mori, K., et al., Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res, 2008. 28(5): p. 335-42. 24.Gu, C.Q., et al., Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antiviral Res, 2007. 75(3): p. 250-7. 25.Masuda, Y., et al., Inhibitory effect of MD-Fraction on tumor metastasis: involvement of NK cell activation and suppression of intercellular adhesion molecule (ICAM)-1 expression in lung vascular endothelial cells. Biol Pharm Bull, 2008. 31(6): p. 1104-8. 26.Kato, K., Inagaki, T., Shibagaki, H., Yamauchi, R., Okuda, K., Sano, T. and Ueno, Y., Structural analysis of the β-d-glucan extracted with aqueous zinc chloride from the fruit body of Grifola frondosa. Carbohydrate research, 1983. 123(2): p. 259-265. 27.Yang, C.S., et al., Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr, 2001. 21: p. 381-406. 28.Mau, J.L., Chang, C. N., Huang, S. J. and Chen, C. C., Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food chemistry, 2004. 87(1): p. 111-118. 29.Sato, M., et al., Effect of dietary Maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice. J Oleo Sci, 2013. 62(12): p. 1049-58. 30.Wu, S.J., et al., Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. Am J Chin Med, 2013. 41(1): p. 131-44. 31.Kodama, N., et al., Effects of D-Fraction, a polysaccharide from Grifola frondosa on tumor growth involve activation of NK cells. Biol Pharm Bull, 2002. 25(12): p. 1647-50. 32.Cui, F.J., et al., Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Toxicol In Vitro, 2007. 21(3): p. 417-27. 33.Deng, G., et al., A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol, 2009. 135(9): p. 1215-21. 34.Steeg, P.S., Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 2003. 3(1): p. 55-63. 35.Sporn, M.B., The war on cancer. Lancet, 1996. 347(9012): p. 1377-81. 36.Yapijakis, C., et al., The interplay between hemostasis and malignancy: the oral cancer paradigm. Anticancer Res, 2012. 32(5): p. 1791-800. 37.Wang, Y. and J.S. Lazo, Metastasis-associated phosphatase PRL-2 regulates tumor cell migration and invasion. Oncogene, 2012. 31(7): p. 818-27. 38.Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 2009. 9(4): p. 265-73. 39.Christiansen, J.J. and A.K. Rajasekaran, Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res, 2006. 66(17): p. 8319-26. 40.Natalwala, A., R. Spychal, and C. Tselepis, Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol, 2008. 14(24): p. 3792-7. 41.Liotta, L.A. and E.C. Kohn, The microenvironment of the tumour-host interface. Nature, 2001. 411(6835): p. 375-9. 42.Aznavoorian, S., et al., Molecular aspects of tumor cell invasion and metastasis. Cancer, 1993. 71(4): p. 1368-83. 43.Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 44.Wick, M.R. and P.E. Swanson, Carcinosarcomas: current perspectives and an historical review of nosological concepts. Semin Diagn Pathol, 1993. 10(2): p. 118-27. 45.Iascone, C. and M. Barreca, Carcinosarcoma and pseudosarcoma of the esophagus: two names, one disease--comprehensive review of the literature. World J Surg, 1999. 23(2): p. 153-7. 46.Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 2007. 7(6): p. 415-28. 47.Medici, D., E.D. Hay, and B.R. Olsen, Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell, 2008. 19(11): p. 4875-87. 48.Zhou, B.P., et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 2004. 6(10): p. 931-40. 49.Nieto, M.A., The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol, 2002. 3(3): p. 155-66. 50.Yokoyama, K., et al., Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol, 2003. 22(4): p. 891-8. 51.Miyoshi, A., et al., Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004. 90(6): p. 1265-73. 52.Hsu, D.S., et al., Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res, 2010. 16(18): p. 4561-71. 53.Hwang, W.L., et al., SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 2011. 141(1): p. 279-91, 291 e1-5. 54.Gutman, M. and I.J. Fidler, Biology of human colon cancer metastasis. World J Surg, 1995. 19(2): p. 226-34. 55.Julkunen-Tiitto, R., Phenolic constituents in the leaves f northern willows: methods for the analysis of certain phenolics. J. Agric. Food Chem., 1985. 33(2): p. 213-217. 56.Ragazzi, E. and G. Veronese, Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. J Chromatogr, 1973. 77(2): p. 369-75. 57.Joshi, S., et al., Amino acids and peptides. LVII. Synthetic peptide with a sequence of ribonuclease from Sulfolobus solfataricus, SSR(1-62), does not function as an RNase. FEBS Lett, 2000. 468(1): p. 11-4. 58.LoTempio, M.M., et al., Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res, 2005. 11(19 Pt 1): p. 6994-7002. 59.Zhang, Y., S.K. Vareed, and M.G. Nair, Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci, 2005. 76(13): p. 1465-72. 60.Lai, K.C., et al., Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem, 2010. 58(5): p. 2935-42. 61.Izdebska, M., M. Gagat, and A. Grzanka, Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is associated with worse clinical outcomes. Int J Oncol, 2018. 52(1): p. 89-102. 62.Wu, H., et al., Asporin enhances colorectal cancer metastasis through activating the EGFR/src/cortactin signaling pathway. Oncotarget, 2016. 7(45): p. 73402-73413. 63.Chen, Y.Y., et al., Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. Int J Oncol, 2010. 36(5): p. 1113-20. 64.Li, Q., et al., Aldolase B Overexpression is Associated with Poor Prognosis and Promotes Tumor Progression by Epithelial-Mesenchymal Transition in Colorectal Adenocarcinoma. Cell Physiol Biochem, 2017. 42(1): p. 397-406. 65.Keenan, T.M. and A. Folch, Biomolecular gradients in cell culture systems. Lab Chip, 2008. 8(1): p. 34-57. 66.Hseu, Y.C., et al., Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis. J Ethnopharmacol, 2011. 135(3): p. 762-71. 67.Ghosh, D. and T. Konishi, Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr, 2007. 16(2): p. 200-8. 68.Yeh, S.L., et al., Flavonoids suppresses the enhancing effect of beta-carotene on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A549 cells. Chem Biol Interact, 2006. 160(2): p. 175-82. 69.Kamiyama, M. and T. Shibamoto, Flavonoids with potent antioxidant activity found in young green barley leaves. J Agric Food Chem, 2012. 60(25): p. 6260-7. 70.Mauray, A., et al., Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr Metab Cardiovasc Dis, 2012. 22(1): p. 72-80. 71.Ziberna, L., et al., Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia-reperfusion injury: beyond concentration-dependent antioxidant activity. Cardiovasc Toxicol, 2010. 10(4): p. 283-94. 72.Li, J., et al., Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: possible renoprotective role in diabetic nephropathy. J Nutr Biochem, 2012. 23(4): p. 320-31. 73.Islam, M.A., Cardiovascular effects of green tea catechins: progress and promise. Recent Pat Cardiovasc Drug Discov, 2012. 7(2): p. 88-99. 74.Mauray, A., et al., Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes Nutr, 2010. 5(4): p. 343-53. 75.Han, K.H., et al., Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Br J Nutr, 2007. 98(5): p. 914-21. 76.Lin, J.T. and W.H. Liu, o-Orsellinaldehyde from the submerged culture of the edible mushroom Grifola frondosa exhibits selective cytotoxic effect against Hep 3B cells through apoptosis. J Agric Food Chem, 2006. 54(20): p. 7564-9. 77.Moalic, S., et al., A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells. FEBS Lett, 2001. 506(3): p. 225-30. 78.Dempsey, M.E., J.W. Farquhar, and R.E. Smith, The effect of beta sitosterol on the serum lipids of young men with arteriosclerotic heart disease. Circulation, 1956. 14(1): p. 77-82. 79.Lopez-Torres, M., R. Perez-Campo, and G. Barja de Quiroga, Effect of natural ageing and antioxidant inhibition on liver antioxidant enzymes, glutathione system, peroxidation, and oxygen consumption in Rana perezi. J Comp Physiol B, 1991. 160(6): p. 655-61. 80.Finimundy, T.C., et al., Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr Res, 2013. 33(1): p. 76-84. 81.李佑軒, 幾種食藥用菇抗氧化、抗發炎活性及其抑制泡沫細胞形成能力. 2015, 中興大學食品暨應用生物科技學系所學位論文.
|