(3.236.231.14) 您好!臺灣時間:2021/04/13 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥廷
研究生(外文):CHEN, YAN-TING
論文名稱:發展一雲端產能規劃模擬系統-以金屬五金加工為例
論文名稱(外文):Development of a Cloud-based Capacity Planning Simulation System – Application in Metal Ironmongery Machining Industry
指導教授:王立志王立志引用關係
指導教授(外文):WANG, LI-CHIH
口試委員:王立志袁明鑑王逸琦
口試委員(外文):WANG, LI-CHIHYUAN, MING-JIANWANG, YI-CHI
口試日期:2018-06-29
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:智慧製造雲端運算產能規劃模型驅動架構
外文關鍵詞:Smart ManufacturingCloud ComputingCapacity PlanningModel Driven Architecture (MDA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為因應迅速的產品汰換週期、高度客製化與精緻化的產品訂單,製造業面臨升級轉型的壓力,智慧製造成為共同的產業趨勢。國內製造業面臨全球訂單動態性的變化,訂單驟減、客戶頻繁詢報價、急短單、變更取消訂單、特殊規格客製化、產銷協調紊亂、無法即時掌握變動的生產資訊等,這些導致訂單達交率不佳的現象,除了需要提高產能效率外,還要提升業務人員的接單能力,並以提升接單能力達成營收成長為目標。金屬五金加工業的生產製程主要可以分為鍛造、加工、熱處理、組裝四大階段,各階段的生產特性與規劃邏輯都不盡相同,生產人員必須要克服複雜製程及BOM表,規劃出具可執行性的排程計畫。
本研究提出一套整合集批排程、逆向排程及組裝排程之產能規劃,考量了金屬五金加工業製程及產品特性之建置,且對於業務人員及生管人員之日常作業情境進行探討,包括訂單交期試算、產能投資及急插單處理等問題;運用JAVA語言結合Amazon Web Service(AWS)雲端運算,並採用修正式模型驅動構築方法(Model-Driven Architecture; MDA)的概念,發展出雲端產能規劃模擬系統(Cloud-based Capacity Planning Simulation System; CCPSS)。最後將應用於國內某金屬五金加工業,該系統經過實作驗證其系統的架構、邏輯、數學及因果的關係,確認CCPSS設計內容均能符合該公司的現況與需求,並可解決業務及生管人員的產銷協調問題,使產能透明化,即時提供客戶所提之訂單交期試算,培養與客戶間的互相信賴關係,提高公司競爭力。

Due to the shorten product lifecycle, highly customized orders and the effectiveness of utilizing capacity are the challenges for manufacturing survival, smart manufacturing is a solution for upgrade and transformation. The domestic manufacturing is confronted with transform of global orders, additional orders, customized product, disorder of production-marketing coordination, and inability to get the immediately production information. These reasons will affect order fill rate. In addition to increase production efficiency, we also have to improve the working ability of sales. The goal is increasing the revenue. The manufacturing process of a metal ironmongery machining industry can be mainly divided into four stages (i.e., forging, machining, heat treatment, and assembling). Since each stage has its unique productive characteristic and planning logic, it is very difficult for a planner to propose a production schedule and bill of material (BOM) which is fully executable in shop floor.
This paper proposes an integrated capacity planning for batching scheduling, backward scheduling and assembling scheduling. It considers the construction of metal ironmongery machining industry process and product characteristics. Business and production management have some problems about order scheduling and capacity investment. Combining with Amazon Web Service (AWS) and the open source of JAVA, as well as the model driven architecture (MDA) approach to develop the cloud-based capacity planning simulation system(CCPSS). Finally, it verified the structure, logic, math, and cause and effect of this system in an application of a domestic metal-ironmongery-machining company. The scheduling system in this study is compared with the traditional scheduling system, and we will explore the situation of the sales and production managers. Finally, we hope to solve the conflict situation in every production-marketing coordination, make capacity transparency, and improve the competitiveness of the company.

摘 要 i
ABSTRACT ii
致謝詞 iii
表目錄 v
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究步驟與方法 5
第二章 文獻回顧 6
2.1 靜態產能規劃 6
2.2 應用模擬技術於產能規劃 7
2.3 雲端計算 9
2.4 雲端產能規劃 10
2.5 模型驅動架構方法介紹 11
第三章 發展雲端產能規劃模擬系統 15
3.1 問題描述 15
3.2 雲端產能規劃模擬系統架構 16
3.3 產能規劃模組 33
3.4 雲端產能規劃模擬系統操作範例說明 46
第四章 雲端產能規劃模擬系統驗證與評估 50
4.1 靜態產能規劃求解方式說明 50
4.2 績效情境與分析 52
4.3 本研究模式應用於實際產業案例 70
第五章 結論 75
5.1 結論與未來方向 75
5.2 建議 76
參考文獻 77
中文文獻:
王心恕(2012)。多目標群粒子搜尋演算法應用於正逆向物流整合型永續供應鏈網絡設計-以太陽產業為例(碩士論文)。東海大學。台中市。
李佳瑋(2003)。利用模型驅動架構技術所發展的工作流程架構(碩士論文)。東海大學。台中市。
吳仁和(2013)。系統分析與設計:理論與實務應用。台北市。智勝文化。
林志聰(2005)。物流中心以分群處理之訂單批次化研究(碩士論文)。中央大學。桃園市。
林金宏(2008)。以TPM 法提升半導體製造設備績效之研究(碩士論文)。國立交通大學。新竹市。
陳靖以(2018)。後拉式物件導向生產排程模擬模式(碩士論文)。東海大學。台中市。
闕羣亞(2014)。發展一產能規劃與分析模擬系統-以半導體晶圓製造為例(碩士論文)。東海大學。台中市。
簡禎富、林國義、許鉅秉、吳政鴻(2016)。台灣生產與作業管理之相關期刊文獻回顧與前瞻:從工業3.0到工業3.5。管理學報,33(1),87-103。
鐘嘉德、高天助、楊嘉栩(2010)。雲端運算與產業發展。研考雙月刊,34(4),20-31。

英文文獻:
Andrzej Goscinski & Michael Brock. (2010). Toward dynamic and attribute based publication, discovery and selection for cloud computing. Future Generation Computer Systems, 26(7), 947-970.
Akrami,B., Karimi, B ., & Moattar Hosseini, S. M.(2006).Two meta heuristic methods for the common cycle economic lot sizing and scheduling in flexible flow shops with limited intermediate buffers: The finite horizon case. Applied Mathematics and Computation, 183(1), 634-645.
Bahaji, N., & Kuhl, M. E. (2008). A simulation study of new multi-objective composite dispatching rules,CONWIP, and push lot release in semiconductor fabrication. International Journal of ProductionResearch, 46(14), 3801-3824.
Bin Xia, Tao Li, Qifeng Zhou, Qianmu Li, and Hong Zhang. (2018). An effective classification-based framework for predicting cloud capacity demand in cloud services. IEEE transactions on service computing, citation information: DOI 10.1109/TSC.2018.2804916.
Brettel, M., Friederichsen, N., Keller, M., and Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44.
Chan, F., Chan, H., & Lau, H. (2002). The state of the art in simulation study on FMS scheduling: a comprehensive survey. The International Journal of Advanced Manufacturing Technology, 19(11), 830-849.
Chen, T. (2012). Intelligent scheduling approaches for a wafer fabrication factory. Journal of Intelligent Manufacturing, 23(3), 897-911.
Chen, Y.-Y., Lin, J. T., & Chen, T.-L. (2011). A two-phase dynamic dispatching approach to semiconductor wafer testing. Robotics and Computer-Integrated Manufacturing, 27(5), 889-901.
Chu, P.-C., Chien, C.-F., and Chen, C.-C. (2016). Analyzing TFT-LCD array big data for yield enhancement and an empirical study of TFT-LCD manufacturing in Taiwan. International Journal of Industrial Engineering: Theory, Applications and Practice, 23(5), 318-331.
Davis, J., Edgar, T., Porter, J., Bernaden, J., and Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering, 47, 145-156.
D Krenczyk, I Paprocka, W M Kempa, C Grabowik, and K Kalinowski. (2016). Integration of scheduling and discrete event simulation systems to improve production flow planning. IOP Conference Series: Materials Science and Engineering.
Esmaeilian, B., Behdad, S., and Wang, B. (2016). The evolution and future of manufacturing: A review. Journal of Manufacturing Systems, 39, 79-100
Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
Gunnar Bolmsj, A., & Harlin, U. (2002). A Survey of the Use of the Discrete-event Simulation in Manufacturing Industry. Journal of Xiamen University (Natural Science).
Gupta, A. K., & Sivakumar, A. I. (2002). Simulation based multiobjective schedule optimization in semiconductor manufacturing. Paper presented at the Simulation Conference, 2002. Proceedings of the Winter.
Huang, B., Li, C., Yin, C., and Zhao, X. (2013). Cloud manufacturing service platform for small-and medium-sized enterprises. The International Journal of Advanced Manufacturing Technology, 1-12.
Iyer, Bala, Henderson, John C. (2010). Preparing for the future: understanding the seven capabilities cloud computing. MIS Quarterly Executive, 9(2), 117-131.
Mohsen Jahangirian, Tillal Eldabi, AishaNaseer, Lampros K. Stergioulas, and Terry Younga (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203(1), 1-13.
Kabak, Kamil Erkan, Heavey, Cathal, & Kernan, Brian. (2012). Single toolset modeling approaches in semiconductor manufacturing. Paper presented at the Proceedings of the Winter Simulation Conference.
Ka ̈mpf, M., & Ko ̈chel, P.(2006). Simulation-based sequencing and lot size optimization for a production-and-inventory system with multiple items. International Journal of Production Economics, 104(1), 191-200.
Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., and Do Noh, S. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 111-128.
Keke Gai, Zhihua Du, Meikang Qiu, and Hui Zhao. (2015). Efficiency-aware workload optimizations of heterogeneous cloud computing for capacity planning in financial industry. IEEE 2nd International conference on cyber security and cloud computing.
Law, A. M., Kelton, W. D., & Kelton, W. D. (1991). Simulation modeling and analysis (Vol. 2): McGraw-Hill New York.
Laili, Y., Tao, F., Zhang, L., and Sarker, B. R. (2012). A study of optimal allocation of computing resources in cloud manufacturing systems. The International Journal of Advanced Manufacturing Technology, 63(5), 671-690.
Lejmi, T., & Sabuncuoglu, I. (2002). Effect of load, processing time and due date variation on the effectiveness of scheduling rules. International Journal of Production Research, 40(4), 945-974.
Liang, S.-K., & Wang, C.-N. (2005). Modularized simulation for lot delivery time forecast in automatic material handling systems of 300 mm semiconductor manufacturing. The International Journal of Advanced Manufacturing Technology, 26(5-6), 645-652.
Liu, J., Yang, F., Wan, H., & Fowler, J. W. (2011). Capacity planning through queueing analysis and simulation-based statistical methods: a case study for semiconductor wafer fabs. International Journal of Production Research, 49(15), 4573-4591.
Manuel Aybar & Kishore Potti. (2002). Using simulation to understand capacity constraints and improve efficiency on process tools. Proceedings of the 2002 Winter Simulation Conference.
Marcus Carvalho, Daniel A. Menasce, Francisco Brasileiro. (2017). Capacity planning for IaaS cloud providers offering multiple service classes. Future generation computer systems, 77, 97-111.
Rahul Ghosh, Francesco Longo, Ruofan Xia, Vijay K. Naik, and Kishor S. Trivedi. (2014). Stochastic model driven capacity planning for an infrastructure-as-a-service cloud. IEEE Transactions on Network and Service Management, 7(4), 667-680.
Rajkumar Buyya & Karthik Sukumar. (2011). Platforms for Building and Deploying Applications for Cloud Computing. CSI Commumcations, 35(1), 6-11.
Ren, L., Zhang, L., Wang, L., Tao, F., and Chai, X. (2017). Cloud manufacturing: key characteristics and applications. International Journal of Computer Integrated Manufacturing, 30(6), 501-515.
Shrouf, F., Ordieres, J., and Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697-701). IEEE.
Swaminathan, J. M. (2000). Tool capacity planning for semiconductor fabrication facilities under demand uncertainty. European Journal of Operational Research, 120(3), 545-558.
Wang, L., S. Y. Lin, and C. I. Chen (2016), “Simulation-based capacity impact analysis for semiconductor fabrication,” The 26th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2016), June 27-30, Korea Science and Technology Center, Yonsei University, Seoul, Korea.
Wang, L., C. I. Chen, and C. Y. Chueh (2016), “Development of a Capacity Planning Simulation Model for Semiconductor Wafer Fabrication,” The 17th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS 2016), December 7-10, Taiwan University of Science and Technology, Taiwan.
Wang, L.*, A. Wang and C. Y. Chueh (2016), “Development of a capacity analysis and planning simulation model for semiconductor fabrication” International Journal of Advanced Manufacturing Technology, (Online: 28, July, 2016, DOI: 10.1007/s00170-016-9089-z)
Wang, L., P. C. Chu, S. Y. Lin (2018), “Impact of capacity fluctuation on throughput performance for semiconductor wafer fabrication” Journal Robotics and Computer-Integrated Manufacturing, (Online: 24, March, 2018, DOI: 10.1016/j.rcim.2018.03.005)
Wei, X. and Liu, H. (2015). A cloud manufacturing resource allocation model based on ant colony optimization algorithm. Int J Grid Distributed Comput, 8(1), 55-66.
Xiong, Hegen, Fan, Huali, Jiang, Guozhang, Li, Gongfa. (2017) A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints. European Journal of Operational Research, 257(1), 13-24.
Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. (2012). Self-adaptive cloud capacity planning. IEEE Ninth International Conference on Services Computing, 73-80.
Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. (2013). Cloud analytics for capacity planning and instant VM provisioning. IEEE Transactions on Network and Service Management, 10(3), 312-325.
Yu-Chuan Lin & Min-Hsiung Hung. (2017). Development of Advanced Manufacturing Cloud of Things (AMCoT)—A S mart Manufacturing Platform. IEEE Robotics and Automation Letters, 2(3), 1809-1816.
Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., Guo, H., Cheng, Y., Hu, A., and Liu, Y. (2014). Cloud manufacturing: a new manufacturing paradigm. Enterprise Information Systems, 8(2), 167-187.
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 3(5), 616-630.
Zhuo, L., Chua Kim Huat, D., & Wee, K. H. (2012). Scheduling dynamic block assembly in shipbuilding through hybrid simulation and spatial optimisation. International Journal of Production Research, 50(20), 5986-6004.

電子全文 電子全文(網際網路公開日期:20230701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔