跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許文華
研究生(外文):HSU, WEN-HUA
論文名稱:(Bi0.9Gd0.1)(Fe1-xCrx)O3複鐵性材料製備及性質研究
論文名稱(外文):Preparation and Characterization of (Bi0.9Gd0.1)(Fe1-xCrx)O3 Multiferroic Materials
指導教授:何志松
指導教授(外文):Ho, Chih-Sung
口試委員:洪東興粘譽薰
口試委員(外文):Hung, Dung-ShungNien, Yu-Hsun
口試日期:2017-10-13
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:91
中文關鍵詞:複鐵性材料鐵電性鐵磁性
外文關鍵詞:BiFeO3Multiferroic materialsFerroelectricityFerromagnetism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用溶膠-凝膠法與固態反應法製備(Bi0.9Gd0.1)(Fe1-xCrx)O3 (BGFCO, x = 0, 0.05, 0.1, 0.15, 0.2)複鐵性塊材,探討摻雜Gd及Cr後對結構、熱膨脹係數、微結構及磁、電性質的影響。
BGFCO複鐵性塊材在空氣環境下,分別經720-900 °C的溫度燒結,在16小時燒結時間下,所有樣品的相對密度皆在60%以上。BiFeO3出現較多雜相,添加10 mol% Gd後,雜相明顯降低,再隨Cr添加量增加,主要繞射峰(104)、(110)強度明顯降低,(201)會成為最強繞射峰。以SEM分別在200、3000、10000 X的倍率下,觀察其微結構變化,結果發現添加10 mol% Gd後,孔洞明顯變小,晶粒形狀為橢圓形,隨Cr添加量增加,形狀轉為方形。熱膨脹係數量測溫度範圍在24-180℃,在相同組成比例下,溶膠-凝膠法製備之塊材的熱膨脹係數皆低於固態反應法,其中溶膠-凝膠法製備之g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3有最小的熱膨脹係數值7.29 μm/m℃。
網路分析儀在共振腔頻率為7 GHz下,分別使用7、8、10 GHz之微波量測介電性質和7.5、9、11 GHz之微波量測磁性質。溶膠-凝膠法製備之g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3在7 GHz有最大介電常數7.625 ;溶膠-凝膠法製備之g-BiFeO3在7 GHz時,有最小介電損失0.00096。溶膠-凝膠法製備之g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3在7.5 GHz時,有最大導磁率28.721;固態反應法製備之s-(Bi0.9Gd0.1)(Fe0.9Cr0.1)O3在7.5 GHz時,有最小磁損率0.063。

In this study, (Bi0.9Gd0.1)(Fe1-xCrx)O3 (BGFCO, x = 0, 0.05, 0.1, 0.15, 0.2) multiferroic materials were prepared by sol-gel and solid-state methods. The effects of doping Gd and Cr on the structure, thermal expansion coefficient, microstructure, and magnetic and dielectrical properties have been investigated.
The multiferroic materials were sintered for 16 hours at the temperature of 720-900℃ in the atmospheric environment. The relative densities of multiferroic materials were all above 60%. The XRD result showed that heterogeneous phase was reduced after doping 10 mol% Gd. When the doping amount of Cr increased, the signal of (201) was higher than those of (104) and (110) and became the main diffraction peak. The variations of microstructure were observed by using SEM at magnifications of 200, 3000, and 10000X, respectively. The voids became smaller after doping 10 mol% Gd and the grain shape was elliptical. When the doping amount of Cr increased, the grain shape transferred to square. The coefficients of thermal expansion of the multiferroic materials prepared by the sol-gel method were lower than those prepared by solid-state method at the same composition ratios. The g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3 prepared by sol-gel method possessed a minimum coefficient of thermal expansions of 7.29 μm/moC.
By using network analyzer with a resonator frequency of 7 GHz, dielectric properties were measured by microwaves of 7, 8, and 10 GHz, respectively. Magnetic properties were measured by microwaves of 7.5, 9, and 11 GHz, respectively. The g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3 and the g-BiFeO3 prepared by sol-gel method possessed a maximum dielectric constant of 7.625 and a minimum dielectric loss of 0.00096 at 7 GHz, respectively. The g-(Bi0.9Gd0.1)(Fe0.95Cr0.05)O3 prepared by sol-gel method and s-(Bi0.9Gd0.1)(Fe0.9Cr0.1)O3 prepared by solid state method possessed a maximum permeability of 28.721 and a minimum magnetic loss of 0.063 at 7.5 GHz, respectively.

摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
1-1 前言 1
1-2 研究目的與動機 2
第二章 文獻回顧 3
2-1 鈣鈦礦材料特性 3
2-2 鉍鐵氧(BiFeO3)的基本性質 6
2-2-1 晶體結構 6
2-2-2 鐵電性質 8
2-2-3 磁性質 10
2-3 摻雜第三元素改質 12
2-3-1 摻雜Gd 14
2-3-2 摻雜Cr 15
2-4 製備方法 16
2-4-1 溶膠-凝膠法 16
2-4-2 固態反應法 20
第三章 實驗方法及設備 22
3-1 實驗藥品 23
3-2 粉體之製備 24
3-2-1 溶膠-凝膠法製備粉體 24
3-2-2 固態反應法製備粉體 26
3-3 複鐵性塊材之製備 28
3-4 性質測量與分析 30
3-4-1 塊材密度量測 31
3-4-2 X光繞射分析儀 (x-ray diffraction, XRD) 31
3-4-3 掃描式電子顯微鏡 (scanning electron microscope, SEM) 31
3-4-4 熱機械分析儀 (thermal mechanical analysis, TMA) 31
3-4-5 網路分析儀 (network analyzer) 32
第四章 結果與討論 32
4-1 密度測量 33
4-2 XRD結構分析 35
4-3 表面微結構 39
4-4 熱性質分析 52
4-5 磁電性質分析 54
4-5-1 介電性質分析 54
4-5-2 磁性質分析 65
第五章 結論 75
參考文獻 78
附錄 85
1. 理論密度計算 85
2. 介電性質計算 88
3. 磁性質計算 89

表目錄
表2-1 BiFeO3摻雜之第三元素及其修飾性質 13
表3-1 樣品組成比例 22
表3-2 溶膠-凝膠法製備g-BGFCO塊材與燒結溫度關係 29
表3-3 固態反應法製備s-BGFCO塊材與燒結溫度關係 29
表4-1 複鐵性塊材之平均粒徑大小 51

圖目錄
圖2.1 鈣鈦礦結構 3
圖2.2 鐵酸鉍於(111)方向極化時,鐵離子相對於氧八面體的位移量 4
圖2.3 隨溫度的改變,鈣鈦礦結構晶體上的變化 5
圖2.4 BiFeO3結構 6
圖2.5 BiFeO3相轉變溫度圖 7
圖2.6 BiFeO3單晶(上)與薄膜(下)之鐵電極化大小 8
圖2.7 BiFeO3六方晶的自旋結構 11
圖2.8 溶膠-凝膠法的反應程序 19
圖2.9 磨球在罐中運動的情形 21
圖3.1 溶膠-凝膠法製作複鐵性塊材流程圖 25
圖3.2 固態反應法製作複鐵性塊材流程圖 27
圖3.3 BGFCO燒結條件 29
圖3.4 BGFCO塊材性質量測流程圖 30
圖4.1 BGFCO複鐵性塊材之相對密度變化圖 34
圖4.2 標準BiFeO3 XRD繞射圖譜 35
圖4.3 溶膠-凝膠法製備之複鐵性塊材XRD繞射圖 36
圖4.4 固態反應法製備之複鐵性塊材XRD繞射圖 37
圖4.5 溶膠-凝膠法製備之複鐵性塊材SEM微結構圖,放大倍率200倍 40
圖4.6 固態反應法製備之複鐵性塊材SEM微結構圖,放大倍率200倍 41
圖4.7 溶膠-凝膠法製備之複鐵性塊材SEM微結構圖,放大倍率3000倍 43
圖4.8 固態反應法製備之複鐵性塊材SEM微結構圖,放大倍率3000倍 44
圖4.9 溶膠-凝膠法製備之複鐵性塊材SEM微結構圖,放大倍率10000倍 46
圖4.10 固態反應法製備之複鐵性塊材SEM微結構圖,放大倍率10000倍 47
圖4.11 固態反應法製備之s-(Bi0.9Gd0.1)(Fe0.85Cr0.15)O3複鐵性塊材,其
大晶粒之EDS元素含量比例圖 48
圖4.12 固態反應法製備之s-(Bi0.9Gd0.1)(Fe0.85Cr0.15)O3複鐵性塊材,其
小晶粒之EDS元素含量比例圖 49
圖4.13 BGFCO複鐵性塊材之熱膨脹係數變化圖 53
圖4.14 BGFCO複鐵性塊材在7 GHz下之介電常數變化圖 55
圖4.15 BGFCO複鐵性塊材在7 GHz下之介電損失變化圖 56
圖4.16 BGFCO複鐵性塊材在8 GHz下之介電常數變化圖 57
圖4.17 BGFCO複鐵性塊材在8 GHz下之介電損失變化圖 58
圖4.18 BGFCO複鐵性塊材在10 GHz下之介電常數變化圖 59
圖4.19 BGFCO複鐵性塊材在10 GHz下之介電損失變化圖 60
圖4.20 溶膠-凝膠法製備之複鐵性塊材在不同頻率下介電常數變化圖 61
圖4.21 溶膠-凝膠法製備之複鐵性塊材在不同頻率下介電損失變化圖 62
圖4.22 固態反應法製備之複鐵性塊材在不同頻率下介電常數變化圖 63
圖4.23 固態反應法製備之複鐵性塊材在不同頻率下介電損失變化圖 64
圖4.24 BGFCO複鐵性塊材在7.5 GHz下之導磁率變化圖 65
圖4.25 BGFCO複鐵性塊材在7.5 GHz下之磁損率變化圖 66
圖4.26 BGFCO複鐵性塊材在9 GHz下之導磁率變化圖 67
圖4.27 BGFCO複鐵性塊材在9 GHz下之磁損率變化圖 68
圖4.28 BGFCO複鐵性塊材在11 GHz下之導磁率變化圖 69
圖4.29 BGFCO複鐵性塊材在11 GHz下之磁損率變化圖 70
圖4.30 溶膠-凝膠法製備之複鐵性塊材在不同頻率下導磁率變化圖 71
圖4.31 溶膠-凝膠法製備之複鐵性塊材在不同頻率下磁損率變化圖 72
圖4.32 固態反應法製備之複鐵性塊材在不同頻率下導磁率變化圖 73
圖4.33 固態反應法製備之複鐵性塊材在不同頻率下磁損率變化圖 74


1.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, Chap1-3 (1997).

2.J. F. Scott, and C. A. Araujo, “Ferroelectric Memory”, Science, 246, 1400-1405 (1989).

3.H. S. Nalwa, “Ferroelectric and dielectric thin films”, Academic press, New York (2002).

4.H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, “Ion Modification for Improvement of Insulating and Ferroelectric Properties of BiFeO3 Thin Films Fabricated by Chemical Solution Deposition”, Jpn. J. Appl. Phys., 44(18), L561-L563 (2005).

5.吳允中,「鐵酸鉍(BiFeO3)摻Sm、Gd、Nd、La的高頻磁電性質量測」,碩士論文,國立中正大學物理學系,2011。

6.肖歡,「BiFeO3基多鐵性材料的製備及摻雜改性研究」,碩士論文,南京航空航天大學核技術及應用學系,2009。

7.J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla and R. Guo, “Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition”, Appl. Phys. Lett., 88, 132901 (2006).

8.B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric ceramics”, Academic Press, New York, 1971.

9.陳智群,「摻雜鑭與鐠對鐵酸鉍陶瓷電性與磁性的影響」,碩士論文,國立清華大學材料科學與工程學系,2007。

10.鐘金峰,「化學液相法製備BiFeO3 氧化物薄膜」,碩士論文,國立清華大學材料科學工程學系,2006。

11.汪宣宇,「Pb(Zr0.1Ti0.9)O3-(Mn0.7Zn0.3)Fe2O4磁電複材製備及性質之研究」,碩士論文,私立東海大學化學工程與材料工程學系,2016。

12.M. M. Kumar, V. R. Palker, K. Srinivas, S. V. Sueyanaryyana, “Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett., 76(19), 2764-2766 (2000).

13.N. N. Krainik, N. P. Khuchua, V. V. Zhdanova, and V. A. Evseev, “Phase transition in BiFeO3”, Sov. Phys. Solid State., 8, 654-658 (1966).

14.A. Maıˆtre, M. Franc¸ois and J.C. Gachon “Experimental Study of the Bi2O3-Fe2O3 Pseudo-Binary System”, Journal of Phase Equilibria and Diffusion, 25(1), 59-67 (2004).

15.J. R. Teague, R. Gersion, and E. J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun., 8(13), 1073-1074 (1970).

16.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures”, Science, 299, 1719-1722 (2003).

17.王子翔,「(Ba,Ti)取代之BiFeO3複鐵性陶瓷的製程與分析」,博士論文,天主教輔仁大學應用科學與工程學系,2011。

18.D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, S. Fusil “Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals”, Phys. Rev. B., 76, 024116 (2007).

19.C. Ederer and N. A. Spaldin, “Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics”, Phys. Rev. Lett. 95, 257601 (2005).

20.X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Appl. Phys. Lett., 86, 062903 (2005).

21.Y. P. Wang, L. Zhou , M. F. Zhang, X. Y. Chen, J. M. Liu and Z.G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett., 84(10), 1731-1733 (2004).

22.V. R. Palkar, K. G. Kumara and S. K. Malik, “Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin films”, Appl. Phys. Lett., 84(15), 2856-2858 (2004).

23.I. Kornev, M. Bichurin, J.-P. Rivera, S. Gentil, H. Schmid, A.G.M. Jansen, H. Schmid, and P. Wyder, “Magnetoelectric properties of LiCoPO4 and LiNiPO4”, Phys. Rev. B., 62, 12247 (2000).

24.B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin and D. Viehland. “Magnetic-field induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogenous spin order”, Physical Review B., 69, 064114 (2004).

25.A. A. Gippius, D. F. Khozeev, E. N. Morozova, A. V. Zalessky, “Observation of spin modulated magnetic structure at Bi- and Fe-sites in BiFeO3 by nuclear magnetic resonance”, Phys. Stat. Sol. (a)., 196, 221-224 (2003).

26.A. Kadomtseva, Yu. Popov, G. Vorob’ev, and A. Zvezdin, “Spin density wave and field induced phase transitions in magnetoelectric antiferromagnets”, Physica B, 211, 327-330 (1995).

27.K. U. H. Tabata and T. Kawai, “Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin film at room temperature”, Appl. Phys. Lett., 75, 555-557 (1999).

28.宋桂林,周曉輝,蘇健,楊海剛,王天興,常方高,「Gd,Co共摻雜對BiFeO3陶瓷電輸運和鐵磁特性的影響」,物理學報, 61(17), 177501 (2012).

29.S. K. Singh, K. Sato, K. Maruyama and H. Ishiwara, “Cr-doping effects to electrical properties of BiFeO3 thin films formed by chemical solution deposition”, Jpn. J. Appl. Phys., 45(41), L1087-L1089 (2006).

30.C. F. Chung, J. P. Lin and J. M. Wu, “Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films”, Appl. Phys. Lett., 88, 242909 (2006).

31.S. K. Singha, H. Ishiwara and K. Maruyama, “Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition”, Appl. Phys. Lett., 88, 262908 (2006).

32.H. Naganuma, J. Miura and S. Okamura, “Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films”, Appl. Phys. Lett., 93, 052901 (2008).

33.Y. Wang and C.-W. Nan, “Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films”, Appl. Phys. Lett., 89, 052903 (2006).

34.Y. H. Lee, J.M. Wu and C.H. Lai, “Influence of La doping in multiferroic properties of BiFeO3 thin films”, Appl. Phys. Lett., 88, 042903 (2006).

35.林志隆,「製備(Bi0.9Sr0.1)(Fe1-xCox)O3複鐵磁塊材及相關物性研究」,碩士論文,私立東海大學化學工程與材料工程學系,2010。

36.C.-H. Yang, T.Y. Koo, Y.H. Jeong, “How to obtain magnetocapacitance effects at room temperature: The case of Mn-doped BiFeO3”, Solid State Commun., 134, 299-301 (2005).

37.張娜,「Cr替代對BiFeO3陶瓷結構和電學性質影響」,碩士論文,河南師範大學物理系,2008。

38.R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, Rui Wu, J. Wang, H. Qian, K. Ibrahim, “Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics”, Ceramics International, 40(9), 14083-14089 (2014).

39.S. S. Arafat, “Structural and magnetic properties of BiFe1−
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊