跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂曉騏
研究生(外文):LU, HSIAO-CHI
論文名稱:竹節管內高濃度二氧化碳與光合作用之關聯
論文名稱(外文):Contribution of Carbon Dioxide in Bamboo Stem to Photosynthesis
指導教授:江智民
指導教授(外文):CHIANG, JYH-MIN
口試委員:宋國彰林宜靜
口試委員(外文):SONG, GUO-ZANGLIN, YI-CHING
口試日期:2018-07-05
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:46
中文關鍵詞:莖光合作用二氧化碳再固定碳固存
外文關鍵詞:bamboocarbon dioxide refixationcarbon sequestrationstem photosynthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
竹(Bambusoideae)為亞太地區與南、北美洲常見的大型禾本科植物,是中國地區僅次於馬尾松和杉木的第三大木材生產植物,其莖具有大面積富含葉綠素的表皮與大容積的空腔,最高生長速率可超過每天一公尺。先前研究發現數種竹子的中空管腔內二氧化碳濃度高達數萬ppm,遠高於大氣平均值400ppm,本研究的目的在於檢測竹子是否能將竹節管內的二氧化碳利用於光合作用。竹節管內的二氧化碳很可能由竹子本身呼吸作用所產生,若竹子能利用莖內高濃度二氧化碳進行「二氧化碳再固定」(carbon dioxide refixation),即可提高光合作用的碳和水使用效率,增加其適存度。本實驗於南投縣魚池鄉蓮華池試驗林林道進行(1)白天遮光 和(2)夜晚照光 的實驗,分別選取40株桂竹(Phyllostachys makinoi Hayata)和30株麻竹(Dendrocalamus latiflorus Munro),白天遮光實驗將樣本隨機分為遮光和照光兩組,於白天自然日照8小時以上,觀察實驗處理一天和十天後的差別;夜晚照光實驗將樣本隨機分配為照光組、加溫組和控制組三組,於夜間各執行實驗處理3小時。結果顯示白天遮光實驗桂竹平均濃度108,253 ppm,實驗處理一天後兩組間無顯著差異,處理十天後遮光組濃度顯著低於照光組;夜晚照光實驗三組麻竹實驗前濃度無顯著差異,平均32625 ppm,實驗處理後控制組增加2756.08 ppm,加溫組增加12253.62 ppm,而照光組雖然溫度增加幅度與加熱組相同,其二氧化碳濃度僅上升2504.76 ppm,顯示竹節管內累積的二氧化碳在照光處理下被重新吸收。本實驗結果顯示竹管內二氧化碳很可能被利用於光合作用,後續實驗可以以整株尺度,檢驗竹管內提供的大量碳源對於竹子快速生長或耐旱表現所扮演的角色。
Bamboo (Bambusoideae) is a large common grass in Asia-Pacific region and North America, the internodes of most bamboo stems are hollow and separated by diaphragms, and the stems of many bamboo species are green. According to previous studies, their highest growth rate can achieve more than one meter per day. Previous studies showed that the concentration of carbon dioxide inside stem cavity was 10s of thousands ppm. The objective of this study was to examine whether bamboo can re-fix the respiratory CO2 accumulated in stem cavity. If bamboos are capable of utilizing the high concentration of respiratory CO2 inside the stem (CO2 refixation), they can reduce the frequency and duration of stomata openings and improve the water use efficiency of photosynthesis. I Selected 40 Phyllostachys makinoi Hayata for daytime shading experiment (DSE), 30 Dendrocalamus latiflorus Munro for night lighting experiments (NLE) at Lianhuachi Forest Research Center (Nantou County, Central Taiwan), For DSE experiment, samples were randomly assigned to light group and shading group. CO2 concentration inside the bamboo stems were extracted and analyzed for each individual after 8 hours and ten days of treatments. In NLE experiment, bamboo shoots were randomly assigned to light treatment, heat treatment, and control and the treatments were carried out for 3 hours.
For DSE, the average concentration of CO2 inside DSE bamboo stem was 108,253ppm, and the treatment effect were not significant after 8 hours. After ten days of shading, CO2 concentration under shading treatment was significantly lower than light group (control). In NLE, the mean CO2 concentration inside bamboo stems was 32625 ppm, CO2 concentration under light treatment was significantly lower than in the heating group, despite the fact that both treatments had the same surface temperature. This suggested that the CO2 stored in bamboo stem was re-absorbed under light treatment. My results demonstrated that bamboos were capable of utilizing ample amount of carbon inside their stems. Future studies on the roles of carbon refixation in such fast growing species and their drought resistance are encouraged.
目錄......................................................i
圖目錄...................................................ii
摘要....................................................iii
Abstract ..................................................iv
壹、前言.................................................. 1
一、竹林與不同林份碳吸存比較.............................1
二、竹生長與分佈.........................................1
三、竹類生長特性.........................................2
四、竹莖空腔中之二氧化碳.................................2
五、植物二氧化碳再吸收...................................2
六、竹莖光合作用是否會吸收莖內二氧化碳...................3
貳、研究材料與方法.........................................4
一、實驗地點.............................................4
二、實驗物種.............................................6
三、研究方法.............................................7
(一)樣區設置與調查....................................7
(二)抽氣裝置之設置....................................7
(三)濃度測量儀器與方法................................8
(四)照光裝置之設置....................................9
四、實驗設計............................................11
(一)日間遮光處理.....................................11
(二)夜間照光處理.....................................11
參、結果..................................................12
一、日間遮光處理........................................12
(一)濃度差異.........................................12
二、夜間照光處理........................................13
(一)溫度差異.........................................13
(二)濃度差異.........................................14
肆、討論..................................................16
伍、結論..................................................18
陸、參考文獻..............................................19
柒、附錄..................................................22

Armstrong, W., and J. Armstrong. 2005. Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of alder (Alnus glutinosa). Annals of Botany 96(4): 591-612.
Aschan, G., C. Wittmann, and H. Pfanz. 2001. Age-dependent bark photosynthesis of aspen twigs. Trees 15(7): 431–437.
Aschan, G., and H. Pfanz. 2003. Non-foliar photosynthesis–a strategy of additional carbon acquisition. Flora 198(2): 81-97.
Aubrey, D. P., and R. O. Teskey. 2009. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytologist 184: 35-40.
Benzing, D. H., and Pockman, W. T. (1989): Why do nonfoliar green organs of leafy orchids fail to exhibit net photosynthesis? Lindleyana 4: 53-60.
Bloom, A. J., F. S. Chapin, and H. A Mooney. 1985. Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics. 16: 363-392.
Bloemen, J., M. A. McGuire, D. P. Aubrey, R. O. Teskey, and K. Steppe. 2012. Transport of root‐respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytologist 197: 555–565.
Bystriakova N., V. Kapos, I. Lysenko, and C.M.A. Stapleton. 2003. Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodiversity and Conservation 12(9): 1833-1841.
Campbell, G. S., and J. M. Norman. 1998. An introduction to environmental biophysics. Springer. Berlin, Germany.
Cernusak, L. A., and J. D. Marshall. 2000. Photosynthetic refixation in branches of Western White Pine. Functional Ecology 14(3): 300-311.
Chang, L. W., D. Zeleny, C. F. LI, S. T. Chiu, and C. F. Hsieh. 2013. Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology 94(10): 2145-2151.
Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring. 1987. Plant responses to multiple environmental factors. BioScience 37(1): 49-57.
Chongtham, N., M. S. Bisht, and S. Haorongbam. 2011. Nutritional properties of bamboo shoots: potential and prospects for utilization as a health food. Comprehensive Reviews in Food Science and Food Safety 10(3): 153-168.
Chu, W. H., F. C. Hsu, and Y. J. Tseng. 2015. Bamboo recycling the CO2 inside the stem for the photosynthesis. Class-2015 Senior Research Theses, Department of Life Science, Tunghai University, 146-153.
Cochard, H., F.W. Ewers, and M.T. Tyree. 1994. Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. Journal of experimental botany 45(8):1085-1089.
Eklund, L. 1990. Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees 4(3): 150-154.
Eklund, L. 1993. Seasonal variations of O2, CO2, and ethylene in oak and maple stems. Canadian Journal of Forest Research 23(12): 2608-2610.
Ford, C.R., N. Wurzburger, R. L. Hendrick, and R. O. Teskey. 2007. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiology 27: 375-383.
Fu, J. H. 2001. Chinese moso bamboo: its importance. Bamboo • The magazine of the American bamboo society 22(5): 5-7.
Gratani, L., M. F. Crescente, L. Varone, G. Fabrini, and E. Digiulio. 2008. Growth pattern and photosynthetic activity of different bamboo species growing in the botanical garden of Rome. Flora 203: 77-84.
Griscom B.W. and P. M. S. Ashton. 2003. Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management 175: 445-454.
Grombone-Guaratini, MT., M. Gaspar, VF. Oliveira, MAMG. Torres, A do. Nascimento, and MPM. Aidar. 2013. Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. New Zealand Journal of Botany 51(4): 275-285.
Hanson, P.J., N.T. Edwards, C.T. Garten, and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48(1): 115-146.
Hanson, P. J., and C. A. Gunderson. 2009. Root carbon flux: measurements versus mechanisms. New Phytologist 184: 1-3.
Hari, P., P. Nygren, and E. Korpilahti. 1991. Internal circulation of carbon within a tree. Canadian Journal of Forest Research 21(4): 514-515.
Isagi, Y., T. Kawahara, K. Kamo, and H. Ito. 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology 130: 41-52.
Kuzyakov, Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38(3): 425-448.
Levy, P.E., P. Meir, S.J.Allen, and P.G. Jarvis. 1999. The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiology 19(1): 53-58.
Li R., M. Xu, M. Hang, G. Wong, S. Qiu, Q. K. Sheng, X. H. Li, and Z. M. Song. 2015. Climate change‐induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Diversity and Distributions 21(4): 379-391.
Li, Y. P., Y. B. Zhang, X. L. Zhang, H. Korpelainen, F. Berninger, and C. Y. Li. 2013. Effects of elevated CO2 and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. Physiologia Plantarum 148(2): 261-272.
Louton, J., J. Gelhaus, and R. Bouchard. 1996. The Aquatic Macrofauna of Water-Filled Bamboo (Poaceae: Bambusoideae: Guadua) Internodes in a Peruvian Lowland Tropical Forest. Biotropica 28(2): 228-242.
McCully M. E., Huang C. X., and Ling L. E. C. 1998. Daily embolism and refilling of xylem vessels in the roots of field-grown maize. The New Phytologist 138(2): 327-342.
McGuire, M. A., and R. O. Teskey. 2002. Microelectrode technique for in situ measurement of carbon dioxide concentrations in xylem sap of trees. Tree Physiology 22(11): 807-811.
McGuire, M. A., and R. O. Teskey. 2004. Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiology 24(5): 571-578.
McGuire M. A., J. D. Marshall, and R. O. Teskey. 2009. Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.). Journal of Experimental Botany 60(13): 3809-3817.
Montti, L., P. I.Campanello, M. G. Gatti, C. Blundo, A. T. Austin, O. E. Sala, and G. Goldstein. 2011. Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentina. Forest Ecology and Management 262(8): 1360-1369.
Moore, D. J. P., M. A. Gonzalez-Meler, L. Taneva, J. S. Pippen, H. S. Kim, E. H. DeLucia. 2008. The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158(1): 1-10.
Ohrnberger, D. 1999. The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier, Amsterdam.
Pfanz, H., G. Aschan, R. Langenfeld-Heyser, C. Wittmann, and M. Loose. 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89(4): 147–162.
Rouhi, V., R. Samson, R. Lemeur, P. Van Damme. 2007. Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental and Experimental Botany 59:117–129.
Saha, S., N. M. Holbrook, L. Montti, G. Goldstein, and G. K. Cardinot. 2009. Water Relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina. Plant Physiology 149: 1992-1999.
Scurlock, J. M. O., D. C. Dayton, and B. Hames. 2000. Bamboo: an overlooked biomass resource? Biomass and Bioenergy 229(19): 229-244.
Sprugel, D. G., and U. Benecke. 1991. Measuring woody-tissue respiration and photosynthesis. Techniques and Approaches in Forest Tree Ecophysiology 1: 329-355.
Steppe, K., A. Saveyn, M. A. McGuire, R. Lemeur, and R. O. Teskey. 2007. Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Functional Plant Biology 34(9): 785-792.
Stiller, V., J. S. Sperry, and R. Lafitte. 2005. Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure. American Journal of Botany 92(12): 1970-1974.
Stringer, J. W., and T. W. Kimmerer. 1993. Refixation of xylem sap CO2 in Populus deltoids. Physiologia Plantarum 89(2): 243-251.
Taiz, L. and E. Zeiger. 2010. Plant Physiology (5th edition) p.667-668. Sinauer Associates Inc., USA.
Teskey, R. O., and M. A. Mcguire. 2002. Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. Plant, Cell & Environment 25(11): 1571-1577.
Teskey, R. O., and M. A. Mcguire. 2005. CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena. Trees 19(4): 357-362.
Teskey, R. O., and M. A. Mcguire. 2007. Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. Plant, Cell & Environment 30(5): 570-579.
Teskey, R. O., A. Saveyn, K. Steppe and M. A. McGuire. 2008. Origin, fate and significance of CO2 in tree stems. New Phytologist 177: 17–32.
Trumbore, S. 2006. Carbon respired by terrestrial ecosystems – recent progress and challenges. Global Change Biology 12(2): 141-153.
Narayanamurty, D., and D. Mohan. 1972. The use of bamboo and reeds in building construction. United Nations. New York, USA.
Ubierna, N., J. D. Marshall, and L. A. Cernusak. 2009. A new method to measure carbon isotope composition of CO2 respired by trees: stem CO2 equilibration. Functional Ecology 23: 1050-1058.
Wen, G., L. Zhang, R. Zhang, Z. Cao, G. Zhou, H. Huang, and M Wong. 2011. Temporal and spatial dynamics of carbon fixation by moso bamboo (Phyllostachys pubescens) in subtropical China. The Botanical Review 77: 271-277.
Yang, S. J., Y. J. Zhang, M. Sun, G. Goldstein, and K. F. Cao. 2012. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiology 32: 414-422.
Yen, T. M., and J. S. Lee. 2011. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management 261: 995-1002.
Yen, T. M., and C. T. Wang. 2013. Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. International Journal of Sustainable Development and World Ecology 20(5): 455-460.
Yong, X., M. H. Wong, J. L. Yang, Z. Q. Ye, P. K. Jiang, and S. J. Zheng. 2011. Dynamics of carbon accumulation during the fast growth period of bamboo plant. The Botanical Review 77: 287-295.
Zhang J, X. Zhang, J. Liang. 1995. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytologist 131: 329-336.
Zhou, B. Z., M. Y. Fu, J. Z. Xie, X. S. Yang, and Z. C. Li. 2005. Ecological functions of bamboo forest: Research and Application. Journal of Forestry Research 16(2): 143-147.
Zhou, G. M., C. F. Meng, P. K. Jiang, and Q. F. Xu. 2011. Review of carbon fixation in bamboo forests in China. The Botanical Review 77: 262-270.
Zimmermann, M. H. 1983. Xylem structure and the ascent of sap. Springer. Berlin, Heidelberg, New York.
陳錦桐,葉若鋆。2017。竹屑應用於菇類栽培。林業研究專訊24(4):14-18.
呂錦明。2010。台灣竹圖鑑。晨星出版。
孫百寬,顏添明。2013。麻竹與孟宗竹林分結構及碳貯存量推估之研究。中興大學森林學系所學位論文。
謝榮生,吳順昭。1992。孟宗竹及麻竹解剖構造與滲透性質之研究。臺灣大學森林環境暨資源學研究所學位論文。
電子全文 電子全文(網際網路公開日期:20240801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top