跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉自仁
研究生(外文):LIU,TZU-JEN
論文名稱:多維常態分佈的貝氏序列估計之模擬比較
論文名稱(外文):Simulation Study on Bayes Sequential Estimation of Multivariate Normal Distribution
指導教授:黃連成
指導教授(外文):HWANG ,LENG-CHENG
口試委員:劉正夫沈葆聖
口試委員(外文):LIU,JENG-FUSHEN,PAO-SHENG
口試日期:2018-01-18
學位類別:碩士
校院名稱:東海大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:19
中文關鍵詞:貝氏序列估計漸近點最優法則穩健型法則最佳序列法則多維度
外文關鍵詞:bayes sequential estimationasymptotically pointwise optimalrobustoptimal sequential proceduremultivariate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
貝氏序列估計目的在於找尋一個最佳序列法則(optimal sequential procedure),其中包含了最佳停止時間(optimal stopping time)與貝氏估計量(Bayes estimator),但是給出明確的最佳停止法則的形式經常是不容易的,所以Bickel and Yahav(1967﹐1968﹚提出大樣本近似的漸近點最優(asymptotically pointwise optimal)法則,來近似最佳停止時間。
本文主要探討在多維常態分佈下使用加權平方誤差損失加上抽樣成本的貝氏序列估計問題,這裡討論Hwang(2017)的穩健(robust)序列法則,以及Bickel and Yahav(1967﹐1968﹚所提出的大樣本漸近點最優法則,以上兩種方法都具備漸近最佳化性質,我們想討論比較在使用不同先驗分佈及參數設定下所得到的結果。
透過模擬本文在給定先驗分佈以及參數組合下,比較穩健型序列法則和漸進點最優序列法則之間的數值結果並進行討論,結果顯示在先驗分佈參數設定錯誤時,因為穩健型序列法則不受先驗分佈影響,而有較好的貝氏風險估計值。

The purpose of Bayesian sequence estimation is to find an optimal sequential procedure that includes the optimal stopping time and the Bayes estimator but gives the exact optimal stopping rule The form is often not easy, so Bickel and Yahav (1967, 1968) proposed the asymptotically pointwise optimal rule for large samples to approximate the optimal stopping time.
This article focuses on the Bayesian sequential estimation problem using weighted square error loss plus sampling cost under multidimensional normal distribution. We discuss the robust sequential procedure of Hwang (2017) and Bickel and Yahav (1967, 1968) Asymptotically pointwise optimal procedure for large samples, both of which have asymptotically optimal properties, we would like to discuss and compare the results of using different prior distribution and parameter settings.
In this article, we given a prior distribution and parameter combinations comparing the numerical results between the robust sequential procedure and the asymptotically pointwise optimal sequential procedure. The results show that when the a prior distribution parameters are set incorrectly the Bayesian risk estimation is better. Because the robust sequential procedure is not affected by the prior distribution.
目 錄
第一章 緒論 1
第二章 多維常態分配的貝氏序列估計 3
第三章 模擬分析及結果 6
第四章 結論 9
數值模擬表格 10
參考文獻 16


Arrow﹐K.J.﹐ Blackwell﹐D.﹐and Girshick﹐M.A. (1949). Bayes and Minimax Solutions of Sequential Decision Problems﹐Econometrica 17: 213-244.
Bickel P.J. and Yahav,J.A. (1967). Asymptotically Pointwise Optimal Procedures in Sequential Analysis, Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 401-413, Unoversity of California Press.
Bickel P.J. and Yahav, J.A. (1968). Asymptotically Optimal Bayes and Minimax Procedures in Sequential Estimation﹐Ann. Math. statist. 33: 442-456.
Chow﹐Y.S.﹐Robbins﹐H.﹐and Siegmund﹐D.(1971). Great Expectations:
The Theory of Optimal Stopping﹐Boston: Houghton Mifflin.
Chow﹐Y.S., and Yu﹐K.F. (1981). On the Performance of a Sequential Procedure for the Estimation of the Mean﹐Ann. Statist. 9: 184-189.
Ghosh﹐B.K. and Sen﹐P.K. (1991). Handbook of Sequential Analysis﹐New York: Marcel Dekker.
Ghosh﹐M. and Hoekstra﹐R.M. (1989). A.P.O. Rules in Hierarchical and Empirical Bayes Models﹐Sequential Analysis 8: 79-100.
Ghosh﹐M.﹐ Mukhopadhyay﹐N.﹐and Sen﹐P.K. (1997). Sequential Estimation﹐New York: Wiley.
Ghosh﹐M., Sinha﹐B.K., and Mukhopadhyay﹐N. (1976). Multivariate Sequential Estimation﹐J. Mult. Anal. 6: 281-294.
Hwang﹐L.-C. (1999). A Robust Asymptotically Optimal Procedure in Bayes Sequential Estimation﹐Statistica Sinica 9: 893-904.
Hwang﹐L.-C. (2017). Asymptotically Optimal Procedures in Multivariate Bayesian Sequential Estimation, Accepted by Sequential Analysis.
Martinsek﹐A.T.(1987). Empirical Bayes Methods in Sequential Estimation﹐Sequential Analysis 6: 119-137.
Takada﹐Y. and Nagao﹐H. (2004). Asymptotic Improvement of the Sample Mean Vector for Sequential Point Estimation of a Multivariate Normal Mean with a LINEX Loss Function﹐Scientiae Mathematicae Japonicae 60: 337-345.
Wald﹐A. (1950). Asymptotic Minimax Solutions of Sequential Point Estimation Problems﹐Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability Los Angeles﹐1-11﹐University of California Press.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top