跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭慶銘
研究生(外文):JENG, CHING-MING
論文名稱:以硼和磷摻雜之奈米碳管紙其PN二極體之製作及電性量測
論文名稱(外文):Electrical Characterization of PN Diode Fabricated by Boron and Phosphorus Doped Buckypaper
指導教授:劉日新劉日新引用關係
指導教授(外文):LIU, JIH-HSIN
口試委員:李立鼎苗新元
口試委員(外文):Li, Li-TingMIAO, HSIN-YUAN
口試日期:2017-11-06
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:96
中文關鍵詞:奈米碳管巴克紙摻雜PN二極體
外文關鍵詞:Carbon nanotubesBuckypaperdopingPN junction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究將奈米碳管(Carbon Nanotubes,CNTs)以真空過濾方式製成奈米碳管紙(Buckypaper,BP),並分為摻入硼酸以增強奈米碳管紙的P型半導體特性的研究、摻入硼酸以及磷酸製作PN二極體的研究,以及等比例混合多壁及單壁奈米碳管以製作PN二極體的三種研究。
第一種研究使用硼酸以噴塗的方式摻雜,並在爐管進行粗真空(2×10-2 torr)及金屬腔體進行高真空(5×10-5 torr)的400℃加熱,配合硼酸濃度進行研究,發現樣品以爐管粗真空的400℃加熱的情況下載子型態有增強P型半導體特性,並加入時間因素研究。
第二種研究則是在硼酸摻雜後,將磷酸以噴塗的方式摻雜,在金屬腔體高真空加熱2小時後,製作出的PN二極體進行電性量測,分為橫向結構及垂直結構,IV曲線及CV曲線均有二極體特性,再用油壓機來壓製,壓製的樣品製作PN二極體,但只有垂直結構有特性。
第三種研究是將等比例的多壁及單壁奈米碳管以混合及分層的過濾方式製成奈米碳管紙,再製作成PN二極體量測,而混合及分層製作的樣品只有在垂直結構有良好的IV及CV曲線,再以油壓機壓製的樣品依舊只有在垂直結構上有二極體特性,因此在壓製後結構雖然更為緻密,但二極體特性並無更優異的表現。

In this study, the suspension of CNTs was filtrated and it was made as a sheet-like bulk material, called buckypaper (BP). It was divided into three parts for study on doped with boric acid to enhanced P-type semiconductor characteristics, and then for study on preparation of PN diode by buckypaper with pure multi-walled carbon nanotube after doped with phosphoric acid to modified into N-type semiconductor, and finally for study on preparation of PN diode by buckypaper with half multi-walled carbon nanotubes and half single-walled carbon nanotubes.

The first method we used boric acid to spray on BP and then heated them at 400°C under a coarse vacuum (2×10-2 Torr) in a tube furnace and another condition we try to heated the sample at 400°C for a high vacuum (5×10-5 Torr) in a metal chamber with boric acid. It was found that the model had enhanced P-type in the case of heating the sample with a coarse vacuum of 400°C in tube furnace and the duration time is also an experimental condition to be explored.

The second method is that the phosphoric acid was sprayed on another side of BP after the boric acid doping in the initial side, and then heated the BP at 400°C in a high vacuum in a metal chamber for 2 hour to produce a PN diode. According to the device structure it is divided into horizontal and vertical structures. The IV curves and CV curves of the two models after the electrical analysis both have the diode properties. And then the compress treatment of BP was applied by hydraulic machine to make it compact. The compact sample showed PN diodes, but only the vertical structure has characteristics, and the uncompressed sample characteristics are superior to the pressed sample characteristics.

The third method was to make BP from multi-walled carbon nanotubes and single-walled carbon nanotubes by a mixed filtration method or alternative layers of different kinds of nanotubes to make a PN diode and measurement. While the samples were mixed or layered manufactured only in the vertical structure has a good IV and CV curve, and then compressed BP showed diode characteristics only in the vertical structure. Although the structure is more compact after pressing, but the BP did not get an excellent performance.

第一章 緒論
1.1 前言
1.2 奈米碳管應用
1.3 研究動機與目的
第二章 文獻回顧
2.1 奈米碳管簡介
2.2 奈米碳管的電學特性
2.3 巴克紙(Buckypaper)簡介
2.4 氧氣及退火對奈米碳管的影響
2.5 PN接面二極體簡介
2.6 接面電容
第三章 實驗架構與量測儀器介紹
3.1 實驗架構
3.2 實驗樣品製備
3.2.1 巴克紙的製備
3.2.2 摻雜溶液製作的製作
3.2.3 加熱系統輔助硼擴散摻雜
3.2.4 加熱系統輔助磷擴散摻雜
3.2.5 PN二極體製作
3.3 電性量測
3.3.1四點量測
3.3.2 霍爾量測
3.3.3 傅立葉轉換紅外光譜(FT-IR)
3.3.4 低溫四點量測
第四章 實驗結果與討論
4.1 硼酸摻雜巴克紙改質
4.1.1 真空度及濃度對硼酸摻雜巴克紙改質
4.1.2 真空度及濃度對硼酸摻雜巴克紙之EDS及SEM分析
4.1.3時間對硼酸摻雜巴克紙改質
4.1.4 時間對硼酸摻雜巴克紙之EDS及SEM分析
4.2 硼酸摻雜及磷酸摻雜巴克紙改質製作PN二極體
4.2.1 巴克紙摻雜製作PN二極體樣品
4.2.2 垂直摻雜結構之PN二極體CV及IV量測
4.2.3 橫向摻雜結構之PN二極體CV及IV量測
4.2.4 垂直結構摻雜壓製之PN二極體CV及IV量測
4.2.5 橫向結構摻雜壓製之PN二極體CV及IV量測
4.2.6 摻雜巴克紙製作PN二極體之EDS及SEM分析
4.3 單壁及多壁奈米碳管對巴克紙改質摻雜製作PN二極體
4.3.1 巴克紙改質摻雜製作PN二極體樣品
4.3.2 分層垂直摻雜結構之PN二極體CV及IV量測
4.3.3 分層橫向摻雜結構之PN二極體CV及IV量測
4.3.4 分層垂直結構摻雜壓製之PN二極體CV及IV量測
4.3.5 分層橫向結構摻雜壓製之PN二極體CV及IV量測
4.3.6 混合摻雜結構之PN二極體CV及IV量測
4.3.7 混合結構摻雜壓製之PN二極體CV及IV量測
4.3.8 摻入單壁奈米碳管PN二極體之EDS及SEM分析
4.3.9 摻入單壁奈米碳管PN二極體之垂直結構IV比較
第五章 結論及未來發展
5.1 結論
5.2 未來發展
參考文獻

[1]http://www.nobelprize.org/nobel_prizes/physics/laureates/1956/.

[2]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.

[3]M. S. Fuhrer et al., Science 288, 494(2000).

[4]T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, pp. 220-222, 1992.

[5]Iijima S., Ichihashi T., “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 1993, vol. 363, pp. 603-605.

[6]D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605-607, 1993.

[7]Andrei Eliseev, Lada Yashina, Marianna Kharlamova and Nikolay Kiselev (2011). One-Dimensional Crystals inside Single-Walled Carbon Nanotubes: Growth, Structure and Electronic Properties, Electronic Properties of Carbon Nanotubes, Prof. Jose Mauricio Marulanda (Ed.), InTech, DOI: 10.5772/19060. Available from: https://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes/one-dimensional-crystals-inside-single-walled-carbon-nanotubes-growth-structure-and-electronic-prope

[8]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56,1991.

[9]T. M. Minea, T. S. Point, A. Gohier, A. Granier, C. Godon, F. Alvarez, “Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth,” Surface & Coatings Technology 200(2005), pp. 1101-1105.


[10]N. Hamada, S. Sawada and A. Oshiyama, “New one-dimensional conductors: graphitic microtubules,” Physical Review Letters, vol.68, pp. 1579-1581, 1992

[11]J. W. Mintmire et al., Physical Review Letters, vol.68, pp. 631-634, 1992.

[12]M. P. Anantram and F. Leonard, “Physics of carbon nanotube electronic devices,” Rep. Prog. Phys. 69, pp. 507-561, 2006

[13]A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. R. Macias, P. J. Boull, A. H. Lul, D. Heymannl, D.T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product and characterization,” Applied Physics A: Materials Science & Processing, vol. 67, pp. 29-37, 1998.

[14]V. Derycke, R. Martel,a) J. Appenzeller, and Ph. Avouris,“Controlling doping and carrier injection in carbon nanotube transistors”, Appl. Phys. Lett. 80, 2773 (2002).

[15]https://zh.wikipedia.org/zh-tw/PN%E7%BB%93

[16] 張俊彥, 施敏, "半導體元件物理與製作技術", 高立, pp.40-44, 1996.

[17] Dieter K. Schroder, "SEMICONDUCTOR MATERIAL ANDDEVICECHARACTERIZATION", Wiley, pp. 1-17, 1998.

[18] J. W. Mayer and S. S. Lau, "ELECTRONIC MATERIALSSCIENCE",Macmillian, pp. 34-35, 1990.

[19] van der Pauw, L.J. "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape". Philips Research Reports 13: 1–9.(1958)


[20] 何元程(2016)。P 型巴克紙改質成 N 型紙之製程方法探討(碩士論文)。取自臺灣博碩士論文系統。(系統編號105THU00442002)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊