|
(1) Shi, D.; Guo, Z.; Bedford, N.Nanocomposites. Nanomater. Devices 2015, 293–315. https://doi.org/10.1016/B978-1-4557-7754-9.00011-1. (2) Joshi, T.; Senty, T. R.; Trappen, R.; Zhou, J.; Chen, S.; Ferrari, P.; Borisov, P.; Song, X.; Holcomb, M. B.; Bristow, A. D.; et al.Structural and Magnetic Properties of Epitaxial Delafossite CuFeO2 Thin Films Grown by Pulsed Laser Deposition. J. Appl. Phys. 2015, 117 (1). https://doi.org/10.1063/1.4905424. (3) Tsuboi, N.; Ohara, H.; Hoshino, T.; Kobayashi, S.; Kato, K.; Kaneko, F.Luminescence Properties of Delafossite-Type CuYO2doped with Calcium, Oxygen or Rare Earth Tb. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44 (1 B), 765–768. https://doi.org/10.1143/JJAP.44.765. (4) Beekman, M.; Salvador, J.; Shi, X.; Nolas, G. S.; Yang, J.Characterization of Delafossite-Type CuCoO2 Prepared by Ion Exchange. J. Alloys Compd. 2010, 489 (2), 336–338. https://doi.org/10.1016/j.jallcom.2009.09.124. (5) Götzendörfer, S.; Polenzky, C.; Ulrich, S.; Löbmann, P.Preparation of CuAlO2 and CuCrO2 Thin Films by Sol-Gel Processing. Thin Solid Films 2009, 518 (4), 1153–1156. https://doi.org/10.1016/j.tsf.2009.02.153. (6) Zhang, P.; Shi, Y.; Chi, M.; Park, J. N.; Stucky, G. D.; McFarland, E. W.; Gao, L.Mesoporous Delafossite CuCrO2and Spinel CuCr2O4: Synthesis and Catalysis. Nanotechnology 2013, 24 (34). https://doi.org/10.1088/0957-4484/24/34/345704. (7) Asemi, M.; Ghanaatshoar, M.Preparation of CuCrO2 Nanoparticles with Narrow Size Distribution by Sol-Gel Method. J. Sol-Gel Sci. Technol. 2014, 70 (3), 416–421. https://doi.org/10.1007/s10971-014-3298-4. (8) Li, J.; Wang, L.-W.First Principle Study of Core/Shell Structure Quantum Dots. Appl. Phys. Lett. 2004, 84 (18), 3648–3650. https://doi.org/10.1063/1.1737470. (9) Bartnik, A. C.; Wise, F. W.; Kigel, A.; Lifshitz, E.Electronic Structure of PbSePbS Core-Shell Quantum Dots. Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 75 (24), 1–6. https://doi.org/10.1103/PhysRevB.75.245424. (10) Xia, H.; Wan, Y.; Yuan, G.; Fu, Y.; Wang, X.Fe3O4/Carbon Core-Shell Nanotubes as Promising Anode Materials for Lithium-Ion Batteries. J. Power Sources 2013, 241, 486–493. https://doi.org/10.1016/j.jpowsour.2013.04.126. (11) Chiu, T. W.; Chen, Y. T.Preparation of CuCrO2 Nanowires by Electrospinning. Ceram. Int. 2015, 41 (S1), S407–S413. https://doi.org/10.1016/j.ceramint.2015.03.224. (12) Marquardt, M. A.; Ashmore, N. A.; Cann, D. P.Crystal Chemistry and Electrical Properties of the Delafossite Structure. Thin Solid Films 2006, 496 (1), 146–156. https://doi.org/10.1016/j.tsf.2005.08.316. (13) Array, A.; Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.P-Type Electrical Conduction in Transparent Thin Films of CuAlO2. Nature 1997, 389 (6654), 939–942. https://doi.org/10.1038/40087. (14) Saadi, S.; Bouguelia, A.; Trari, M.Photocatalytic Hydrogen Evolution over CuCrO2. Sol. Energy 2006, 80 (3), 272–280. https://doi.org/10.1016/j.solener.2005.02.018. (15) Chandradass, J.; Balasubramanian, M.Sol-Gel Processing of Alumina Fibres. J. Mater. Process. Technol. 2006, 173 (3), 275–280. https://doi.org/10.1016/j.jmatprotec.2005.11.030. (16) Jiansheng, L.; Lianjun, W.; Yanxia, H.; Xiaodong, L.; Xiuyun, S.Preparation and Characterization of Al2O3 Hollow Fiber Membranes. J. Memb. Sci. 2005, 256 (1–2), 1–6. https://doi.org/10.1016/j.memsci.2004.07.014. (17) Peintinger, M. F.; Kratz, M. J.; Bredow, T.Quantum-Chemical Study of Stable, Meta-Stable and High-Pressure Alumina Polymorphs and Aluminum Hydroxides. Mater. Chem. A 2014, 2, 13143–13158. https://doi.org/10.1039/c4ta02663b. (18) Dai, H.; Gong, J.; Kim, H.; Lee, D.A Novel Method for Preparing Ultra-Fine Alumina-Borate Oxide Fibres via an Electrospinning Technique. Nanotechnology 2002, 13 (5), 674–677. https://doi.org/10.1088/0957-4484/13/5/327. (19) Yang, Z.; Peng, H.; Wang, W.; Liu, T.Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116 (5), 2658–2667. https://doi.org/10.1002/app. (20) Takahashi, H.; Y-Motegi; Tsuchigane, R.; Hasegawa, M.Pressure Effect on the Antiferromagnetic Transition Temperature in CuFeO2. J. Magn. Magn. Mater. 2004, 272–276 (I), 216–217. https://doi.org/10.1016/j.jmmm.2003.11.084. (21) Ketir, W.; Bouguelia, A.; Trari, M.NO3- Removal with a New Delafossite CuCrO2 Photocatalyst. Desalination 2009, 244 (1–3), 144–152. https://doi.org/10.1016/j.desal.2008.05.020. (22) Kameoka, S.; Okada, M.; Tsai, A. P.Preparation of a Novel Copper Catalyst in Terms of the Immiscible Interaction between Copper and Chromium. Catal. Letters 2008, 120 (3–4), 252–256. https://doi.org/10.1007/s10562-007-9277-4. (23) Zhou, S.; Fang, X.; Deng, Z.; Li, D.; Dong, W.; Tao, R.; Meng, G.; Wang, T.Room Temperature Ozone Sensing Properties of P-Type CuCrO2 Nanocrystals. Sensors Actuators, B Chem. 2009, 143 (1), 119–123. https://doi.org/10.1016/j.snb.2009.09.026. (24) Okuda, T.; Beppu, Y.; Fujii, Y.; Kishimoto, T.; Uto, K.; Onoe, T.; Jufuku, N.; Hidaka, S.; Terada, N.; Miyasaka, S.Hole-Doping Effect on the Magnetic State of Delafossite Oxide CuCrO2. J. Phys. Conf. Ser. 2009, 150 (4). https://doi.org/10.1088/1742-6596/150/4/042157. (25) Hayashi, K.; Sato, K. I.; Nozaki, T.; Kajitani, T.Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2. Jpn. J. Appl. Phys. 2008, 47 (1), 59–63. https://doi.org/10.1143/JJAP.47.59. (26) Chiu, T. W.; Yang, Y. C.; Yeh, A. C.; Wang, Y. P.; Feng, Y. W.Antibacterial Property of CuCrO2 Thin Films Prepared by RF Magnetron Sputtering Deposition. Vacuum 2013, 87, 174–177. https://doi.org/10.1016/j.vacuum.2012.04.026. (27) Hahn, H.; DeLorent, C.Untersuchungen Über Ternäre Chalkogenide. VII. Versuche Zur Darstellung Ternärer Oxyde Des Aluminiums, Galliums Und Indiums Mit Einwertigem Kupfer Und Silber. Zeitschrift für Anorg. und Allg. Chemie 1955, 279 (5‐6), 281–288. https://doi.org/10.1002/zaac.19552790504. (28) Benko, F. A.; Koffyberg, F. P.Opto-Electronic Properties of CuAlO2. J. Phys. Chem. Solids 1984, 45 (1), 57–59. https://doi.org/10.1016/0022-3697(84)90101-X. (29) 資源工程研究所 碩士學位論文 使用溶液燃燒法合成新式中溫型固態氧 化物燃料電池陰極材料 Synthesis of Novel Cathode Materials Solution Combustion Methode. (30) 資源工程研究所 碩士學位論文 GNP 法之反應機制探討以合成中溫型固態氧化物 Synthesis Mechanism of Glycine-Nitrate Process , Taking IT-SOFC Cathode Material as an Example . (31) Zhou, W.; Shao, Z.; Ran, R.; Gu, H.; Jin, W.; Xu, N.LSCF Nanopowder from Cellulose-Glycine-Nitrate Process and Its Application in Intermediate-Temperature Solid-Oxide Fuel Cells. J. Am. Ceram. Soc. 2008, 91 (4), 1155–1162. https://doi.org/10.1111/j.1551-2916.2007.02242.x. (32) Bo, S. H.; Li, X.; Toumar, A. J.; Ceder, G.Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x=0.4). Chem. Mater. 2016, 28 (5), 1419–1429. https://doi.org/10.1021/acs.chemmater.5b04626. (33) Yabuuchi, N.; Ikeuchi, I.; Kubota, K.; Komaba, S.Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-Ray Diffraction. ACS Appl. Mater. Interfaces 2016, 8 (47), 32292–32299. https://doi.org/10.1021/acsami.6b09280. (34) Ginley, D.; Roy, B.; Ode, A.; Warmsingh, C.; Yoshida, Y.; Parilla, P.; Teplin, C.; Kaydanova, T.; Miedaner, A.; Curtis, C.; et al.Non-Vacuum and PLD Growth of next Generation TCO Materials. Thin Solid Films 2003, 445 (2), 193–198. https://doi.org/10.1016/j.tsf.2003.08.008. (35) Chiu, T. W.; Tonooka, K.; Kikuchi, N.Fabrication of Transparent CuCrO2:Mg/ZnO p-n Junctions Prepared by Pulsed Laser Deposition on Glass Substrate. Vacuum 2008, 83 (3), 614–617. https://doi.org/10.1016/j.vacuum.2008.04.027. (36) Chiu, T.-W.; Tsai, S.-W.; Wang, Y.-P.; Hsu, K.-H.Preparation of P-Type Conductive Transparent CuCrO2:Mg Thin Films by Chemical Solution Deposition with Two-Step Annealing; 2012; Vol. 38. https://doi.org/10.1016/j.ceramint.2011.09.048. (37) Wang, Y. F.; Gu, Y. J.; Wang, T.; Shi, W. Z.Magnetic, Optical and Electrical Properties of Mn-Doped CuCrO2 Thin Films Prepared by Chemical Solution Deposition Method. J. Sol-Gel Sci. Technol. 2011, 59 (2), 222–227. https://doi.org/10.1007/s10971-011-2487-7. (38) Chiu, T. W.; Shih, J. H.; Chang, C. H.Preparation and Properties of CuCr1 − XFexO2 Thin Films Prepared by Chemical Solution Deposition with Two-Step Annealing. Thin Solid Films 2016, 618, 151–158. https://doi.org/10.1016/j.tsf.2016.03.048. (39) Götzendörfer, S.; Bywalez, R.; Löbmann, P.Preparation of P-Type Conducting Transparent CuCrO2 and CuAl0.5Cr0.5O2 Thin Films by Sol–Gel Processing; 2009; Vol. 52. https://doi.org/10.1007/s10971-009-1989-z. (40) Lin, Y. H.; Yu, B. S.; Lei, C. M.; Fu, Y.; Park, J. H.; Chiu, T. W.CuCr1−xNixO2 Thin Films Prepared by Chemical Solution Deposition. Thin Solid Films 2018, 660 (November 2017), 705–710. https://doi.org/10.1016/j.tsf.2018.04.011. (41) Weaver, J. F.; Hagelin-Weaver, H. A. E.; Hoflund, G. B.; Salaita, G. N.Electron Energy Loss Spectra from Polycrystalline Cr and Cr2O3 before and after Surface Reduction by Ar + Bombardment. Appl. Surf. Sci. 2006, 252 (22), 7895–7903. https://doi.org/10.1016/j.apsusc.2005.09.059. (42) Lee, M. S.; Kim, T. Y.; Kim, D.Anisotropic Electrical Conductivity of Delafossite-Type CuAlO2 Laminar Crystal. Appl. Phys. Lett. 2001, 79 (13), 2028–2030. https://doi.org/10.1063/1.1405809. (43) Y. Zheng, S.; Jiang, G. S.; Su, J. R.; Zhu, C. F.The Structural and Electrical Property of CuCr1−xNixO2 Delafossite Compounds; 2006; Vol. 60. https://doi.org/10.1016/j.matlet.2006.03.132. (44) Benko, F. A.; Koffyberg, F. P.CuCrO2 Properties. 1986, 21 (c), 753–757. (45) Saha, B.; Das, N. S.; Chattopadhyay, K. K.Combined Effect of Oxygen Deficient Point Defects and Ni Doping in Radio Frequency Magnetron Sputtering Deposited ZnO Thin Films; 2014; Vol. 562. https://doi.org/10.1016/j.tsf.2014.03.038. (46) Yuan, C.; Li, J.; Hou, L.; Yang, L.; Shen, L.; Zhang, X.Facile Template-Free Synthesis of Ultralayered Mesoporous Nickel Cobaltite Nanowires towards High-Performance Electrochemical Capacitors. J. Mater. Chem. 2012, 22 (31), 16084–16090. https://doi.org/10.1039/c2jm32351f. (47) González-Elipe, A. R.; Holgado, J. P.; Alvarez, R.; Munuera, G.Use of Factor Analysis and XPS to Study Defective Nickel Oxide. J. Phys. Chem. 1992, 96 (7), 3080–3086. https://doi.org/10.1021/j100186a056.
|