跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱育平
研究生(外文):ZHU, YU-PING
論文名稱:利用氧化鋁微米球製備氧化鋁-赤銅鐵礦核殼球
論文名稱(外文):Fabrication of Delafossite and Al2O3 Core-Shell Structure by Using Al2O3 Microspheres.
指導教授:邱德威
指導教授(外文):CHIU, TE-WEI
口試委員:吳慧敏雷健明徐曉萱
口試委員(外文):WU, HUEI-MINLEI, JIAN-MINGHSU, HSIAO-HSUAN
口試日期:2019-07-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:赤銅鐵礦型核-殼結構CuCrO2
外文關鍵詞:delafossites-typeCuCrO2core-shell structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本次研究中利用CuCrO2前驅液製備氧化鋁-銅鉻氧化物(Al2O3 - CuCrO2)核-殼結構。使用醋酸銅、醋酸鉻、乙醇胺及乙二醇甲醚混合作為CuCrO2前驅液,再利用商業氧化鋁(Al2O3)球作為模板,透過前驅液含浸氧化鋁微米球後,將銅鉻離子沉積在Al2O3球的表面,再將含浸後的粉末,在150˚C加熱板上烘乾4分鐘,然後冷卻3分鐘。重複5次循環以獲得所需的厚度。並利用兩階段退火:第一階段在氫氣(10%)和氮氣(90%)中,以升溫速率10˚C/min,到達400˚C並持溫15分鐘,然後第二階段,將反應氣體轉換為純氮氣,以升溫速率10˚C/min,升溫至600˚C退火1小時,得到Al2O3 - CuCrO2核-殼結構。由XRD分析得知樣品呈現CuCrO2與Al2O3的峰值。SEM圖中可以看出Al2O3 - CuCrO2呈現出核-殼結構。
In this work, Alumina/Copper chromium oxide (Al2O3 - CuCrO2) core-shell structure was prepared by CuCrO2 precursor. Initially, CuCrO2 precursor solution was mixed by copper acetate, chromium acetate, ethanolamine and ethylene glycol methyl ether. And the commercial Alumina (Al2O3) microspheres were used as a template. The Al2O3 microspheres were dipped in the CuCrO2 precursor solution, then mainly depositing copper chromium ions on the surface of Al2O3 microspheres. The deposition Al2O3 microspheres was dried at the 150˚C hotplate for 4 min and then cooled down for 3 min. This procedure was performed with 5 cycles to obtain the desired thickness. The sample were annealed with two-step. First step was in the hydrogen (10%) and nitrogen (90%) atmosphere risen to 400˚C (rise rate10˚C/min) for 15 minutes, and then second step, the forming gas was switched to a pure nitrogen, and risen to 600˚C (rise rate10˚C/min) annealed for 1 hour to obtain the Al2O3-CuCrO2 core-shell structure. XRD analysis showed that the peak of CuCrO2 and Al2O3 appear. It could be seen through the SEM image that the top view presented the Al2O3 - CuCrO2 core-shell structure.
摘 要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章、緒論 1
1.1 總覽 1
1.2 研究目的 3
第二章、文獻回顧 4
2.1 赤銅鐵礦結構 ( Delafossite ) 4
2.2 核殼結構(Core-Shell Structure) 1 5
2.2.1 引言 5
2.2.2 核殼複合結構之特性 6
2.2.3 核殼結構之複合方法 7
2.2.3.1 聚合化學反應 7
2.2.3.2 生物分子 7
2.2.3.3 表面化學沉積 8
2.2.3.4 超音波化學 8
2.2.3.5 自組裝 9
2.2.4 核殼複合結構之形成機制 9
2.2.4.1 化學鍵 9
2.2.4.2 庫倫靜電力 10
2.2.4.3 介質層吸附 10
2.2.5 核殼複合材料之應用 10
2.3 氧化鋁(Al2O3) 12
2.4 減壓過濾法 14
2.4.1原理 14
2.4.2器材 15
2.4.3實驗操作 16
2.4.4 應注意事項 17
第三章、實驗步驟 18
3.1 實驗藥品 18
3.2 實驗氣體 18
3.3 粉末熱處理 19
3.4 特徵分析 21
3.4.1熱重分析 21
3.4.2 X-ray繞射光譜儀 22
3.4.3場發射掃描式電子顯微鏡 ( FE-SEM ) 24
第四章、製備氧化鋁-銅鉻氧化物核殼球之特性研究 26
4.1 實驗方法 26
4.1.1 製備赤銅鐵礦前驅液 26
4.1.2 減壓過濾法 27
4.1.3 二階段退火 28
4.2 結果與討論 29
4.2.1 X-ray繞射光譜儀分析 29
4.3.2 掃描式電子顯微分析 31
4.3.3 化學元素定性、定量分析 32
4.3.4 熱重分析 37
第五章、以甘胺酸燃燒法製備NaCrO2奈米粉末之研究 39
5.1 研究目的 39
5.2 文獻探討 40
5.2.1赤銅鐵礦結構 40
5.2.2燃燒合成法 41
5.3 實驗步驟 43
5.3.1 實驗藥品 43
5.3.2 燃燒合成法製備NaCrO2粉末 44
5.4 結果與討論 45
5.4.1 燃燒合成法製備NaCrO2粉末之XRD分析 45
5.5 結論 47
第六章、以射頻磁控濺鍍法製備CuCrO2:Mg薄膜且探討NH3退火對其電性之研究 48
6.1 前言 48
6.2 實驗步驟 50
6.2.1 實驗藥品 50
6.2.2 基板準備 51
6.2.3 銅鉻氧化物靶材製備 52
6.2.4 濺鍍實驗 53
6.3 特徵分析 54
6.4 結果與討論 55
6.4.1 CuCrO2:Mg在不同退火溫度之XRD分析 55
6.4.2 CuCrO2:Mg之SEM分析 56
6.4.3電性分析 57
6.4.4 CuCrO2:Mg薄膜之XPS分析 58
6.5 結論 63
第七章、結論 64
參考文獻 65
Conference presentations 70


(1) Shi, D.; Guo, Z.; Bedford, N.Nanocomposites. Nanomater. Devices 2015, 293–315. https://doi.org/10.1016/B978-1-4557-7754-9.00011-1.
(2) Joshi, T.; Senty, T. R.; Trappen, R.; Zhou, J.; Chen, S.; Ferrari, P.; Borisov, P.; Song, X.; Holcomb, M. B.; Bristow, A. D.; et al.Structural and Magnetic Properties of Epitaxial Delafossite CuFeO2 Thin Films Grown by Pulsed Laser Deposition. J. Appl. Phys. 2015, 117 (1). https://doi.org/10.1063/1.4905424.
(3) Tsuboi, N.; Ohara, H.; Hoshino, T.; Kobayashi, S.; Kato, K.; Kaneko, F.Luminescence Properties of Delafossite-Type CuYO2doped with Calcium, Oxygen or Rare Earth Tb. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44 (1 B), 765–768. https://doi.org/10.1143/JJAP.44.765.
(4) Beekman, M.; Salvador, J.; Shi, X.; Nolas, G. S.; Yang, J.Characterization of Delafossite-Type CuCoO2 Prepared by Ion Exchange. J. Alloys Compd. 2010, 489 (2), 336–338. https://doi.org/10.1016/j.jallcom.2009.09.124.
(5) Götzendörfer, S.; Polenzky, C.; Ulrich, S.; Löbmann, P.Preparation of CuAlO2 and CuCrO2 Thin Films by Sol-Gel Processing. Thin Solid Films 2009, 518 (4), 1153–1156. https://doi.org/10.1016/j.tsf.2009.02.153.
(6) Zhang, P.; Shi, Y.; Chi, M.; Park, J. N.; Stucky, G. D.; McFarland, E. W.; Gao, L.Mesoporous Delafossite CuCrO2and Spinel CuCr2O4: Synthesis and Catalysis. Nanotechnology 2013, 24 (34). https://doi.org/10.1088/0957-4484/24/34/345704.
(7) Asemi, M.; Ghanaatshoar, M.Preparation of CuCrO2 Nanoparticles with Narrow Size Distribution by Sol-Gel Method. J. Sol-Gel Sci. Technol. 2014, 70 (3), 416–421. https://doi.org/10.1007/s10971-014-3298-4.
(8) Li, J.; Wang, L.-W.First Principle Study of Core/Shell Structure Quantum Dots. Appl. Phys. Lett. 2004, 84 (18), 3648–3650. https://doi.org/10.1063/1.1737470.
(9) Bartnik, A. C.; Wise, F. W.; Kigel, A.; Lifshitz, E.Electronic Structure of PbSePbS Core-Shell Quantum Dots. Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 75 (24), 1–6. https://doi.org/10.1103/PhysRevB.75.245424.
(10) Xia, H.; Wan, Y.; Yuan, G.; Fu, Y.; Wang, X.Fe3O4/Carbon Core-Shell Nanotubes as Promising Anode Materials for Lithium-Ion Batteries. J. Power Sources 2013, 241, 486–493. https://doi.org/10.1016/j.jpowsour.2013.04.126.
(11) Chiu, T. W.; Chen, Y. T.Preparation of CuCrO2 Nanowires by Electrospinning. Ceram. Int. 2015, 41 (S1), S407–S413. https://doi.org/10.1016/j.ceramint.2015.03.224.
(12) Marquardt, M. A.; Ashmore, N. A.; Cann, D. P.Crystal Chemistry and Electrical Properties of the Delafossite Structure. Thin Solid Films 2006, 496 (1), 146–156. https://doi.org/10.1016/j.tsf.2005.08.316.
(13) Array, A.; Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.P-Type Electrical Conduction in Transparent Thin Films of CuAlO2. Nature 1997, 389 (6654), 939–942. https://doi.org/10.1038/40087.
(14) Saadi, S.; Bouguelia, A.; Trari, M.Photocatalytic Hydrogen Evolution over CuCrO2. Sol. Energy 2006, 80 (3), 272–280. https://doi.org/10.1016/j.solener.2005.02.018.
(15) Chandradass, J.; Balasubramanian, M.Sol-Gel Processing of Alumina Fibres. J. Mater. Process. Technol. 2006, 173 (3), 275–280. https://doi.org/10.1016/j.jmatprotec.2005.11.030.
(16) Jiansheng, L.; Lianjun, W.; Yanxia, H.; Xiaodong, L.; Xiuyun, S.Preparation and Characterization of Al2O3 Hollow Fiber Membranes. J. Memb. Sci. 2005, 256 (1–2), 1–6. https://doi.org/10.1016/j.memsci.2004.07.014.
(17) Peintinger, M. F.; Kratz, M. J.; Bredow, T.Quantum-Chemical Study of Stable, Meta-Stable and High-Pressure Alumina Polymorphs and Aluminum Hydroxides. Mater. Chem. A 2014, 2, 13143–13158. https://doi.org/10.1039/c4ta02663b.
(18) Dai, H.; Gong, J.; Kim, H.; Lee, D.A Novel Method for Preparing Ultra-Fine Alumina-Borate Oxide Fibres via an Electrospinning Technique. Nanotechnology 2002, 13 (5), 674–677. https://doi.org/10.1088/0957-4484/13/5/327.
(19) Yang, Z.; Peng, H.; Wang, W.; Liu, T.Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116 (5), 2658–2667. https://doi.org/10.1002/app.
(20) Takahashi, H.; Y-Motegi; Tsuchigane, R.; Hasegawa, M.Pressure Effect on the Antiferromagnetic Transition Temperature in CuFeO2. J. Magn. Magn. Mater. 2004, 272–276 (I), 216–217. https://doi.org/10.1016/j.jmmm.2003.11.084.
(21) Ketir, W.; Bouguelia, A.; Trari, M.NO3- Removal with a New Delafossite CuCrO2 Photocatalyst. Desalination 2009, 244 (1–3), 144–152. https://doi.org/10.1016/j.desal.2008.05.020.
(22) Kameoka, S.; Okada, M.; Tsai, A. P.Preparation of a Novel Copper Catalyst in Terms of the Immiscible Interaction between Copper and Chromium. Catal. Letters 2008, 120 (3–4), 252–256. https://doi.org/10.1007/s10562-007-9277-4.
(23) Zhou, S.; Fang, X.; Deng, Z.; Li, D.; Dong, W.; Tao, R.; Meng, G.; Wang, T.Room Temperature Ozone Sensing Properties of P-Type CuCrO2 Nanocrystals. Sensors Actuators, B Chem. 2009, 143 (1), 119–123. https://doi.org/10.1016/j.snb.2009.09.026.
(24) Okuda, T.; Beppu, Y.; Fujii, Y.; Kishimoto, T.; Uto, K.; Onoe, T.; Jufuku, N.; Hidaka, S.; Terada, N.; Miyasaka, S.Hole-Doping Effect on the Magnetic State of Delafossite Oxide CuCrO2. J. Phys. Conf. Ser. 2009, 150 (4). https://doi.org/10.1088/1742-6596/150/4/042157.
(25) Hayashi, K.; Sato, K. I.; Nozaki, T.; Kajitani, T.Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2. Jpn. J. Appl. Phys. 2008, 47 (1), 59–63. https://doi.org/10.1143/JJAP.47.59.
(26) Chiu, T. W.; Yang, Y. C.; Yeh, A. C.; Wang, Y. P.; Feng, Y. W.Antibacterial Property of CuCrO2 Thin Films Prepared by RF Magnetron Sputtering Deposition. Vacuum 2013, 87, 174–177. https://doi.org/10.1016/j.vacuum.2012.04.026.
(27) Hahn, H.; DeLorent, C.Untersuchungen Über Ternäre Chalkogenide. VII. Versuche Zur Darstellung Ternärer Oxyde Des Aluminiums, Galliums Und Indiums Mit Einwertigem Kupfer Und Silber. Zeitschrift für Anorg. und Allg. Chemie 1955, 279 (5‐6), 281–288. https://doi.org/10.1002/zaac.19552790504.
(28) Benko, F. A.; Koffyberg, F. P.Opto-Electronic Properties of CuAlO2. J. Phys. Chem. Solids 1984, 45 (1), 57–59. https://doi.org/10.1016/0022-3697(84)90101-X.
(29) 資源工程研究所 碩士學位論文 使用溶液燃燒法合成新式中溫型固態氧 化物燃料電池陰極材料 Synthesis of Novel Cathode Materials Solution Combustion Methode.
(30) 資源工程研究所 碩士學位論文 GNP 法之反應機制探討以合成中溫型固態氧化物 Synthesis Mechanism of Glycine-Nitrate Process , Taking IT-SOFC Cathode Material as an Example .
(31) Zhou, W.; Shao, Z.; Ran, R.; Gu, H.; Jin, W.; Xu, N.LSCF Nanopowder from Cellulose-Glycine-Nitrate Process and Its Application in Intermediate-Temperature Solid-Oxide Fuel Cells. J. Am. Ceram. Soc. 2008, 91 (4), 1155–1162. https://doi.org/10.1111/j.1551-2916.2007.02242.x.
(32) Bo, S. H.; Li, X.; Toumar, A. J.; Ceder, G.Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x=0.4). Chem. Mater. 2016, 28 (5), 1419–1429. https://doi.org/10.1021/acs.chemmater.5b04626.
(33) Yabuuchi, N.; Ikeuchi, I.; Kubota, K.; Komaba, S.Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-Ray Diffraction. ACS Appl. Mater. Interfaces 2016, 8 (47), 32292–32299. https://doi.org/10.1021/acsami.6b09280.
(34) Ginley, D.; Roy, B.; Ode, A.; Warmsingh, C.; Yoshida, Y.; Parilla, P.; Teplin, C.; Kaydanova, T.; Miedaner, A.; Curtis, C.; et al.Non-Vacuum and PLD Growth of next Generation TCO Materials. Thin Solid Films 2003, 445 (2), 193–198. https://doi.org/10.1016/j.tsf.2003.08.008.
(35) Chiu, T. W.; Tonooka, K.; Kikuchi, N.Fabrication of Transparent CuCrO2:Mg/ZnO p-n Junctions Prepared by Pulsed Laser Deposition on Glass Substrate. Vacuum 2008, 83 (3), 614–617. https://doi.org/10.1016/j.vacuum.2008.04.027.
(36) Chiu, T.-W.; Tsai, S.-W.; Wang, Y.-P.; Hsu, K.-H.Preparation of P-Type Conductive Transparent CuCrO2:Mg Thin Films by Chemical Solution Deposition with Two-Step Annealing; 2012; Vol. 38. https://doi.org/10.1016/j.ceramint.2011.09.048.
(37) Wang, Y. F.; Gu, Y. J.; Wang, T.; Shi, W. Z.Magnetic, Optical and Electrical Properties of Mn-Doped CuCrO2 Thin Films Prepared by Chemical Solution Deposition Method. J. Sol-Gel Sci. Technol. 2011, 59 (2), 222–227. https://doi.org/10.1007/s10971-011-2487-7.
(38) Chiu, T. W.; Shih, J. H.; Chang, C. H.Preparation and Properties of CuCr1 − XFexO2 Thin Films Prepared by Chemical Solution Deposition with Two-Step Annealing. Thin Solid Films 2016, 618, 151–158. https://doi.org/10.1016/j.tsf.2016.03.048.
(39) Götzendörfer, S.; Bywalez, R.; Löbmann, P.Preparation of P-Type Conducting Transparent CuCrO2 and CuAl0.5Cr0.5O2 Thin Films by Sol–Gel Processing; 2009; Vol. 52. https://doi.org/10.1007/s10971-009-1989-z.
(40) Lin, Y. H.; Yu, B. S.; Lei, C. M.; Fu, Y.; Park, J. H.; Chiu, T. W.CuCr1−xNixO2 Thin Films Prepared by Chemical Solution Deposition. Thin Solid Films 2018, 660 (November 2017), 705–710. https://doi.org/10.1016/j.tsf.2018.04.011.
(41) Weaver, J. F.; Hagelin-Weaver, H. A. E.; Hoflund, G. B.; Salaita, G. N.Electron Energy Loss Spectra from Polycrystalline Cr and Cr2O3 before and after Surface Reduction by Ar + Bombardment. Appl. Surf. Sci. 2006, 252 (22), 7895–7903. https://doi.org/10.1016/j.apsusc.2005.09.059.
(42) Lee, M. S.; Kim, T. Y.; Kim, D.Anisotropic Electrical Conductivity of Delafossite-Type CuAlO2 Laminar Crystal. Appl. Phys. Lett. 2001, 79 (13), 2028–2030. https://doi.org/10.1063/1.1405809.
(43) Y. Zheng, S.; Jiang, G. S.; Su, J. R.; Zhu, C. F.The Structural and Electrical Property of CuCr1−xNixO2 Delafossite Compounds; 2006; Vol. 60. https://doi.org/10.1016/j.matlet.2006.03.132.
(44) Benko, F. A.; Koffyberg, F. P.CuCrO2 Properties. 1986, 21 (c), 753–757.
(45) Saha, B.; Das, N. S.; Chattopadhyay, K. K.Combined Effect of Oxygen Deficient Point Defects and Ni Doping in Radio Frequency Magnetron Sputtering Deposited ZnO Thin Films; 2014; Vol. 562. https://doi.org/10.1016/j.tsf.2014.03.038.
(46) Yuan, C.; Li, J.; Hou, L.; Yang, L.; Shen, L.; Zhang, X.Facile Template-Free Synthesis of Ultralayered Mesoporous Nickel Cobaltite Nanowires towards High-Performance Electrochemical Capacitors. J. Mater. Chem. 2012, 22 (31), 16084–16090. https://doi.org/10.1039/c2jm32351f.
(47) González-Elipe, A. R.; Holgado, J. P.; Alvarez, R.; Munuera, G.Use of Factor Analysis and XPS to Study Defective Nickel Oxide. J. Phys. Chem. 1992, 96 (7), 3080–3086. https://doi.org/10.1021/j100186a056.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top