跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童俊毓
研究生(外文):Jun-Yu, Tong
論文名稱:以資料驅動多準則決策模式改善綠色供應商管理
論文名稱(外文):Using a data-based MCDM model for improving green supplier management
指導教授:劉建浩劉建浩引用關係
口試委員:許超澤車振華
口試日期:2018-06-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:多準則決策分析決策實驗室分析法隨機森林支配性約略集合資料探勘
外文關鍵詞:Multiple Criteria Decision Method (MCDM)Decision Making Trial and Evaluation Laboratory (DEMATEL)Random Forest (RF)Dominance-based Rough Set Approach (DRSA)Data Mining
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在經濟全球化的影響下,企業面臨巨大的挑戰即是供應商管理,伴隨著經濟發展與環境汙染問題,現代企業高度追求無汙染的供應鏈已是不可或缺的一步,因此,綠色環境績效逐漸成為供應商管理的必要項目。供應商管理要有適當定期的評量以確保能達到各種合乎績效評估的指標。本研究著重於在既有的綠色供應商下,專注於綠色品質指標的客觀篩選與供應商的績效改善。使用支配性約略集合 (Dominance-Based Rough Set Approach, DRSA) 篩選出中重要的關鍵指標。不同於過去之研究使用專家問卷調查的方式,本研究使用隨機森林 (Random Forest, RF) 建構出指標間初始影響關係矩陣,並利用決策實驗室分析法 (Decision Making Trial and Evaluation Laboratory, DEMATEL) 有效地瞭解指標間複雜的因果關係結構,藉由檢視元素間影響程度獲取網路關係圖,最後將網路關係圖結合支配性約略集合之“IF..., THEN…”規則,擬定改善策略,並藉由準則的類型判別出改善的重點項目,省下眾多成本與時間,藉此增加供應商的競爭優勢,為企業帶來更大的整體利益,最後本研究實際採用三家供應商證明此模型之有效性。
Under the influence of economic globalization, the most important challenge for the enterprise is supplier management, regarded as the intangible assets. Due to the developing of the economic and rising awareness of environmental protection, it is essential for modern enterprises to pursue a pollution-free supply chain. Therefore, the green environment performance has become a necessary indicator for supplier management. Supplier management should have appropriate evaluation methods and regularly evaluate supplier performance. This study focuses on the green quality indicators and the improvement of suppliers performance. This study applied Dominance-based Rough Set Approach (DRSA), a data mining method, to extract the essential indicators from green quality indicators. Different from the traditional experts survey, we applied Random Forest (RF) to construct the matrix of the initial influence between indicators, and used of the Decision Making Trial and Evaluation Laboratory (DEMATEL) to understand structure of cause-effect relationship between the indicators. With the obtained influence relationship between indicators, this study further utilized DRSA-based "IF ..., THEN ..." rules to provide improvement strategies for green suppliers and identify the types of criteria for critical projects to save cost and time. With this model, decision makers can improve the supplier performance. In the end, based on the real data from an electronic company, a case study proves effectiveness of the model.
摘 要 i
ABSTRACT ii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 3
1.3 研究方法 4
1.4 研究流程 5
第二章 文獻探討 7
2.1 綠色供應鏈管理 7
2.2 綠色供應商相關研究 10
2.2.1多準則決策分析 10
2.2.2 大數據分析方法 13
2.2.3 統計及其他方法 14
2.3 資料探勘 16
2.3.1支配性約略集合 20
2.3.2 隨機森林 22
2.4 多準則決策方法論 23
2.4.1 決策實驗室分析法 26
第三章 研究方法 28
3.1 支配性約略集合 28
3.2 隨機森林 36
3.3 決策實驗室分析法 39
第四章 實證分析 43
4.1 個案背景與問題描述 43
4.2 支配性約略集合篩選核心指標與規則 45
4.2.1 近似品質 (Lower and Upper Approximations Quality) 46
4.2.2屬性簡約 (Core and Reducts of Attributes) 47
4.2.3決策規則產生 (Rule extraction) 47
4.2.4 規則驗證 (Rule Validation) 52
4.3 隨機森林建構初始影響關係矩陣 53
4.4 決策實驗室分析法建構網路關係圖 54
4.5 管理意涵 57
第五章 討論與分析 62
5.1供應商改善之應用 62
第六章 結論與建議 66
6.1 結論 66
6.2 未來研究建議 67
參考文獻 69
中文部分:
陳珮欣,「綠色競爭力評估指標之建構與應用-以加工出口區為例」,成功大學工業與資訊管理學系碩士在職專班學位論文,2010,第1-101頁。
黃雅芳,「運用資料探勘方法評估冠狀動脈疾病之研究」,高雄醫學大學醫務管理學研究所碩士在職專班學位論文,2009,第1-82頁。
章國威、陳淑娟、郭仕堯,「以複合式多準則決策模式探討台灣發展綜合渡假村之選址策略」,運動休閒管理學報,第十卷,第一期,2013,第100-114頁。
賴張揚,「綠色供應商之環境績效評估」,中原大學工業工程研究所碩士學位論文,2006,第1-104頁。
簡禎富、許嘉裕,「資料挖礦與大數據分析」,前程文化,台北,2014。
許享承,「綠色供應鏈管理機制建構之研究--以A公司為例」,中央大學管理學院高階主管企管碩士班學位論文,2006,第1-99頁。
王鴻儒、 簡禎富、徐紹鐘、李培瑞,「決策樹資料挖礦架構及其於半導體製程之實證研究」,科技管理研討會論文集,2000,第671-690頁。
葉忠興,「企業財務危機診斷模式之建構」,人文暨社會科學期刊,第八卷,第一期,第13-21頁。
卓達瑋,「隨機森林分類方法於基因組顯著性檢定上之應用」,政治大學統計研究所學位論文,2010,第1-51頁。
周淑卿、郭彥輝,「綠色產業財務績效預測評估模型研究」,海峽兩岸氣候變遷與能源永續發展論壇,台北市:財團法人台灣永續能源研究基金會,2011。
趙李英,「細胞基因檢測衍生資訊隱私權與專利權保護之研究」,中國文化大學法律學系碩士論文,2011。
安利平,「基於粗集理論的多屬性決策分析」,北京:科學出版社,2008。

英文部分:
Abastante, F., Asunis, S., Bottero, M. C., Greco, S. and Lami, I. M. (2010), “The Dominance-based Rough Set Approach for sustainability assessment: the evaluation of alternative transport links between two Italian cities”, The Sustainable Urban Development Reader, pp.345-360.
Akman, G. (2015), “Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods”, Computers and industrial engineering, vol. 86, pp. 69-82.
Awasthi, A. and Kannan, G. (2016), “Green supplier development program selection using NGT and VIKOR under fuzzy environment”, Computers and Industrial Engineering, vol. 91, pp.100-108.
Awasthi, A., Chauhan, S. S. and Goyal, S. K. (2010), “A fuzzy multicriteria approach for evaluating environmental performance of suppliers”, International Journal of Production Economics, vol. 126, issues 2, pp.370-378.
Azadnia, A. H., Saman, M. Z. M. and Wong, K. Y. (2015), “Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process”, International Journal of Production Research, vol. 53, issues 2, pp.383-408.
Bai, C. and Sarkis, J. (2013), “A grey-based DEMATEL model for evaluating business process management critical success factors”, International Journal of Production Economics, vol. 146, issues 1, pp.281-292.
Bai, C., Dhavale, D. and Sarkis, J. (2016), “Complex investment decisions using rough set and fuzzy c-means: an example of investment in green supply chains”, European Journal of Operational Research, vol. 248, issues 2, pp.507-521.
Beamon, B. M. (1998), “Supply chain design and analysis: Models and methods”, International journal of production economics, vol. 55, issues 3, pp.281-294.
Berry, M. J. and Linoff, G. (1997), “Data mining techniques: for marketing, sales, and customer support”, John Wiley and Sons, Inc.
Breiman, L. (2001), “Random forests”, Machine learning, vol. 45, issues 1, pp.5-32.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., Zanasi, A. (1997), “Discovering data mining: from concept to implementation”, New Jersey: Prentice Hall PTR, pp.27.
Chioa, H. K. and Huang, Y. T. (2009), “Applying Rough Set Theory to Constructing Knowledge Base for Critical Military Commodity Management”, Journal of China University Science and Technology, vol. 41, pp.171-186.
Chen, I. S. (2016), “A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry”, Journal of Air Transport Management, vol. 57, pp.7-18.
Ciarapica, F. E., De Sanctis, I., Resta, B., Dotti, S., Gaiardelli, P., Bandinelli, R. and Rinaldi, R. (2016), “Integrating Sustainability in the Fashion System Using Association Rules. In Workshop on Business Models and ICT Technologies for the Fashion Supply Chain”, Springer, pp.239-250.
Dickson, G. W. (1966), “An analysis of vendor selection systems and decisions”, Journal of purchasing, vol.2, issues 1, pp.5-17.
Dimitras, A. I., Slowinski, R., Susmaga, R. and Zopounidis, C. (1999), “Business failure prediction using rough sets”, European Journal of Operational Research, vol.114 issues 2, pp.263-280.
Fallahpour, A., Amindoust, A., Antucheviciene, J. and Yazdani, M. (2017), “Nonlinear genetic-based model for supplier selection: a comparative study”, Technological and Economic Development of Economy, vol.23, issues 1, pp.178-195.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996), “From data mining to knowledge discovery in databases”, AI magazine, vol. 17, issues 3, pp.37.
Faraji Sabokbar, H., Ayashi, A., Hosseini, A., Banaitis, A., Banaitienė, N. and Ayashi, R. (2016), “Risk assessment in tourism system using a fuzzy set and dominance-based rough set”, Technological and Economic Development of Economy, vol. 22 issues 4, pp.554-573.
Gao, J. and Lu, X. (2015), “Forecast of China railway freight volume by random forest regression model”, In Logistics, Informatics and Service Sciences (LISS), International Conference on IEEE, pp.1-6.
Gaia do, A. B. (2015), “Using a Dominance-based Rough Set Approach for Analysing Business Indicators”, Procedia Computer Science, vol. 55, pp.350-359.
Greco, S., Matarazzo, B., Slowinski, R. and Stefanowski, J. (2000), “An algorithm for induction of decision rules consistent with the dominance principle”, In International Conference on Rough Sets and Current Trends in Computing, pp.304-313.
Govindan, K. and Sivakumar, R. (2016), “Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches”, Annals of Operations Research, vol. 238, issues 1-2, pp.243-276.
Guo, Z., Liu, H., Zhang, D. and Yang, J. (2017), “Green Supplier Evaluation and Selection in Apparel Manufacturing Using a Fuzzy Multi-Criteria Decision-Making Approach”, Sustainability, vol. 9 issues 4, pp.650.
Handfield, R. B. and Wieland, A. (2014), “SCM research survey: initial results”, Denmark: Copenhagen Business School.
Han, J., Pei, J. and Kamber, M. (2011), “Data mining: concepts and techniques”, Elsevier.
Hashemi, S. H., Karimi, A. and Tavana, M. (2015), “An integrated green supplier selection approach with analytic network process and improved Grey relational analysis”, International Journal of Production Economics, vol. 159, pp.178-191.
Hervani, A. A., Helms, M. M. and Sarkis, J. (2005), “Performance measurement for green supply chain management”, Benchmarking: An international journal, vol. 12, issues 4, pp.330-353.
Ho, W., Xu, X. and Dey, P.K. (2010), “Multi-criteria decision making approaches for supplier evaluation and selection: a literature review”, European Journal of Operational Research, vol. 202, pp.16-24.
Hori, S. and Shimizu, Y. (1999), “Designing methods of human interface for supervisory control systems”, Control engineering practice, vol. 7, issues 11, pp.1413-1419.
Hsu, C. W., Kuo, T. C., Chen, S. H. and Hu, A. H. (2013), “Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management”, Journal of cleaner production, vol. 56, pp.164-172.
Hsu, C. W. and Hu, A. H. (2009), “Applying hazardous substance management to supplier selection using analytic network process”, Journal of Cleaner Production, vol. 17, issues 2, pp. 255-264.
Kannan, D., de Sousa Jabbour, A. B. L. and Jabbour, C. J. C. (2014), “Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company”, European Journal of Operational Research, vol. 233, issues 2, pp.432-447.
Kannan, D., Govindan, K. and Rajendran, S. (2013), “Fuzzy Axiomatic Design approach based green supplier selection: a case study from Singapore”, Journal of Cleaner Production, vol. 96, pp.194-208.
Kleissner, C. (1998), “Data mining for the enterprise”, In System Sciences, Proceedings of the Thirty-First Hawaii International Conference, vol. 7, pp.295-304.
Kuo, R. J., Wang, Y. C. and Tien, F. C. (2010), “Integration of artificial neural network and MADA methods for green supplier selection”, Journal of cleaner production, vol. 18, issues 12, pp.1161-1170.
Laari, S., Töyli, J. and Ojala, L. (2017), “Supply chain perspective on competitive strategies and green supply chain management strategies”, Journal of Cleaner Production, vol. 141, pp.1303-1315.
Lee AHI, Kang, H.Y., Hsu C.F. and Hung H.C. (2009), “A green supplier selection model for high-tech industry”, Expert System Apply, vol. 36, issue 4, pp.7917–7927.
Liu, G. and Zhu, Y. (2006), “Credit assessment of contractors: a rough set method”, Tsinghua Science and Technology, vol.11, issues 3, pp.57-362.
Liou, J. J., Tzeng, G. H. and Chang, H. C. (2007), “Airline safety measurement using a hybrid model”, Journal of air transport management, vol. 13, issues 4, pp.243-249.
Liou, J. J. and Tzeng, G. H. (2010), “A dominance-based rough set approach to customer behavior in the airline market”, Information Sciences, vol.180, issues 11, pp.2230-2238.
Liao, S. H. and Chang, H. K. (2016), “A rough set-based association rule approach for a recommendation system for online consumers”, Information Processing and Management, vol. 52, issue 6, pp.1142-1160.
Lo Storto, C. (2017), “A peeling DEA-game cross efficiency procedure to classify suppliers”, In MATEC Web of Conferences, vol. 112, pp.09004.
Luthra, S., Garg, D. and Haleem, A. (2015), “An analysis of interactions among critical success factors to implement green supply chain management towards sustainability: An Indian perspective”, Resources Policy, vol. 46, pp.37-50.
Luthra, S., Govindan, K., Kannan, D., Mangla, S. K. and Garg, C. P. (2017), “An integrated framework for sustainable supplier selection and evaluation in supply chains”, Journal of Cleaner Production, vol. 140, pp.1686-1698.
Lu, L. Y., Wu, C. H. and Kuo, T. C. (2007), “Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis”, International Journal of Production Research, vol. 45, issues 18-19, pp.4317-4331.
Mavi, R. K., Kazemi, S., Najafabadi, A. F. and Mousaabadi, H. B. (2013), “Identification and assessment of logistical factors to evaluate a green supplier using the fuzzy logic DEMATEL method”, Polish journal of environmental studies, vol. 22, issues 2, pp.39-54.
Nowak, W., Pieniazek, M., Nakayama, M. and Hachol, A. (2016), “Feature analyses of pupil light reflex to chromatic stimuli in Alzheimers patients. In Frontiers of Signal Processing”, International Conference on IEEE, pp.58-62.
Noci, G. (2000), “Environmental reporting in Italy: current practice and future developments”, Business Strategy and the Environment, vol. 9, issues 4, pp.211.
Pawlak, Z. (1982), “Rough sets”, International journal of computer & information sciences, vol. 11, issues 5, pp.341-356.
Peters, G. and Poon, S. (2011), “Analyzing IT business values a dominance based rough sets approach perspective”, Expert Systems with Applications, vol. 38, issues 9, pp.11120-11128.
Proch, M., Worthmann, K. and Schlüchtermann, J. (2017), “A negotiation-based algorithm to coordinate supplier development in decentralized supply chains”, European Journal of Operational Research, vol. 256, issues 2, pp.412-429.

Qingkui, C. and Junhu, R. (2009), “Study on the Supplier Evaluation in Green Supply Chain Based on Rough Sets Theory and Analytic Hierarchy Process”, In Electronic Commerce and Business Intelligence, International Conference on IEEE, pp.280-283.
Rostamzadeh, R., Govindan, K., Esmaeili, A. and Sabaghi, M. (2015), “Application of fuzzy VIKOR for evaluation of green supply chain management practices”, Ecological Indicators, vol. 49, pp.188-203.
Sarkis, J. (2003), “A strategic decision framework for green supply chain management”, Journal of cleaner production, vol. 11, issues 4, pp.397-409.
Sawicki, P. and Żak, J. (2014), “The application of dominance-based rough sets theory to evaluation of transportation systems”, Procedia Social and Behavioral Sciences, vol. 111, pp.1142-1154.
Seuring, S. and Müller, M. (2008), “From a literature review to a conceptualframework for sustainable supply chain management”, Journal of Cleaner Production, vol. 16, issues 15, pp.1699-1710.
Shen, L., Olfat, L., Govindan, K., Khodaverdi, R. and Diabat, A. (2013), “A fuzzy multi criteria approach for evaluating green suppliers performance in green supply chain with linguistic preferences”, Resources, Conservation and Recycling, vol. 74, pp.170-179.
Shen, K. Y. and Tzeng, G. H. (2015), “Combined soft computing model for value stock selection based on fundamental analysis”, Applied Soft Computing, vol. 37, pp.142-155.
Shreyas, R., Akshata, D. M., Mahanand, B. S., Shagun, B. and Abhishek, C. M. (2016), “Predicting popularity of online articles using Random Forest regression. In Cognitive Computing and Information Processing”, Second International Conference, pp.1-5.
Simpson, D. F. and Power, D. J. (2005), “Use the supply relationship to develop lean and green suppliers”, Supply chain management: An international Journal, vol. 10, issues 1, pp.60-68.
Talluri, S. and Narasimhan, R. (2003), “Vendor evaluation with performance variability: A max–min approach”, European journal of operational research, vol. 146, issues 3, pp.543-552.
Tuzkaya, G., Ozgen, A., Ozgen, D. and Tuzkaya, U. R. (2009), “Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach”, International Journal of Environmental Science and Technology, vol. 6, tissues 3, pp.477-490.
Tzeng, G. H., Chiang, C. H. and Li, C. W. (2007), “Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL”, Expert Systems with Applications, vol. 32, pp.1028-1044.
Tzeng, G. H. and Huang, J.J. (2011), “Multiple Attribute Decision Making: Methods and Applications”, CRC Press.
Wu, C. and Barnes, D. (2016), “An integrated model for green partner selection and supply chain construction”, Journal of Cleaner Production, vol. 112, pp.2114-2132.
Wu, W. W. and Lee, Y. T. (2007), “Developing global manager competencies using the fuzzy DEMATEL method”, Expert systems with applications, vol. 32, issues 2, pp.499-507.
Wu, Z. and Xia, W. (2007), “Supplier selection with multiple criteria in volume discount environments”, Omega, vol. 35, issues 5, pp.494-504.
Yang, J. L. and Tzeng, G. H. (2011), “An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method”, Expert Systems with Applications, vol. 38, issues 3, pp.1417-1424.
Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F. and Li, D. C. (2016), “Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem”, Ecological indicators, vol. 60, pp.870-878.
Yang, Y. P. O., Shieh, H. M. and Tzeng, G. H. (2013), “A VIKOR technique based on DEMATEL and ANP for information security risk control assessment”, Information Sciences, vol. 232, pp.482-500.
Yazdani, M., Chatterjee, P., Zavadskas, E. K. and Zolfani, S. H. (2017), “Integrated QFD-MCDM framework for green supplier selection”, Journal of Cleaner Production, vol. 142, pp.3728-3740.
Yazdani, M., Hashemkhani Zolfani, S. and Zavadskas, E. K. (2016), “New integration of MCDM methods and QFD in the selection of green suppliers”, Journal of Business Economics and Management, vol. 17, issues 6, pp.1097-1113.
Yeh, C. C., Lin, F. and Hsu, C. Y. (2012), “A hybrid KMV model, random forests and rough set theory approach for credit rating”, Knowledge-Based Systems, vol. 33, pp.166-172.
Yoon, K. P. and Hwang, C. L. (1995), “Multiple attribute decision making: an introduction”, Sage publications, vol. 104.
Yu, P. L. (1973), “A class of solutions for group decision problems”, Management Science, vol. 19, issues 8, pp.936-946.
Zhao, H. and Guo, S. (2014), “Selecting green supplier of thermal power equipment by using a hybrid MCDM method for sustainability”, Sustainability, vol. 6, issues 1, pp.217-235.
Zhou, G. (2016), “Research on supplier performance evaluation system based on data mining with triangular fuzzy information”, Journal of Intelligent and Fuzzy Systems, vol. 31, issues 3, pp.2035-2042.
Zhu, Q., Sarkis, J. and Lai, K. H. (2012), “Examining the effects of green supply chain management practices and their mediations on performance improvements”, International journal of production research, vol. 50, issues 5, pp.1377-1394.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊