跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明展
研究生(外文):Ming-Chan Tsai
論文名稱:低收縮率之光固化 3D 列印樹脂之製備及性質
論文名稱(外文):Preparation and properties of low-shrinkage UV- curing resin for 3D-printing.
指導教授:汪昆立
口試委員:范加錫陳文祥黃聲東
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:桶槽光固化收縮率3D 列印溶膠凝膠法
外文關鍵詞:Vat polymerizationShrinkage3D-printingSol-Gel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究旨在開發具低收縮率並可以用簡易的設備和快速生產的光固化樹脂,
成 功 合 成 以 溶 膠 - 凝 膠 法 (Sol-Gel) 將 含 3-Methacryloxypropyltrimethoxysilane
(MAPTMS)搭配不同比例之 Pentaerythritol triacrylate(PETA)與固定比例的異丙醇
和鹽酸水溶液在 pH~2 下合成出矽氧烷丙烯酸酯,再搭配 3 種不同雙官能基之稀
釋劑和光起始劑製出 3D 列印光固化樹脂,探討改變雙鍵密度與固化後的收縮率、
熱性質間之關係。結果顯示在沒有加任何填充物下最低可以達到 5%.,熱性質方
面,在氮氣環境下 5%及 10%熱裂解溫度(T d )為 293 o C~346 o C 及 367 o C~390 o C。
此光固化壓克力樹脂具有製備簡單、快速、透明無色、、T g 高、熱裂解溫度
高、容易移除以及固化收縮率低等優勢,可以應用於 3D 列印支撐材,在高精密
度的 3D 成型技術中有良好的表現外,在改善收縮率方面仍有很大的進步空間。
The aim of the research is to develop a low shrinkage resin which could be
produced rapidly by simple equipment. Herein, 3D-printing UV-curing resin of silicon
acrylates which were prepared by sol-gel condensation with 3-
Methacryloxypropyltrimethoxysilane (MAPTMS), different portion of pentaerythritol
triacrylate(PETA) and equal portion of isopropyl alcohol and HCl (aq ) to MAPTMS
under pH~2 atmosphere, then incorporate three different kinds of bi-functional diluent
each other and photo initiator. The effects of changing double bond density on shrinkage,
and on the influence of thermal properties were invested. The results show the lowest
shrinkage value after curing is 5.0% without adding any filler. The temperature at 5%
and 10% weight loss measured by TGA under nitrogen were in the range of 293 o C to
346 o C and 367 o C to 390 o C.
These results suggest that photo-curable acrylic resin has the advantages of easy
and rapid preparation, high pyrolysis temperature, easy removable and low cure
shrinkage, and it should have a good performance in the high-precision 3D molding
technology whether in use directly or as a support material for 3D-printing resin. There
is still room for improving shrinkage.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
第一節 前言 1
第二節 研究動機 1
第二章 文獻回顧及相關原理 2
2.1 收縮率[1-2] 2
2.1.1光固化樹脂收縮率的改善 4
2.1.1.2填充物的摻入 7
2.2 3D列印成型方法[7-9] 8
2.2.1 光固化3D列印的技術 8
2.2.2 3D列印DLP及SLA的比較[15] 11
2.3紫外光固化反應 13
2.3.1自由基聚合 14
2.3.2陽離子聚合 16
2.3.3 自由基與陽離子聚合的比較[16, 18-19, 21] 17
2.4紫外光固化之起源[17, 22-24] 18
2.4.1紫外光固化樹脂之特性[17, 22, 24-25] 19
2.4.2紫外光固化樹脂之組成[17, 24, 26-29] 20
2.5影響紫外光硬化樹脂之因素 36
2.5.1氧阻聚現象 37
2.5.2光源 37
2.5.3光起始劑及波長選擇 38
2.5.4輻射設備 40
2.5.5溫度效應 40
2.6溶膠-凝膠技術(Sol-Gel Science)[45-48] 41
2.6.1溶膠-凝膠法之pH值的依屬性值(pH-Dependence)[49] 43
2.6.2溶膠-凝膠法之水含量多寡的影響 46
2.6.3溶膠-凝膠法之溶劑比例的影響 46
2.7 分子設計概念 47
第三章 實驗藥品與設備 48
3.1實驗藥品 48
3.2儀器設備 49
第四章 實驗方法 51
4.1 AS寡聚物合成方法 51
4.2 ASP系列寡聚物合成方法 51
4.3 BS寡聚物合成方法[51] 52
4.4 BSP系列寡聚物合成方法[51] 52
4.5光固化樹脂配方命名法 53
第五章 結果與討論 54
5.1 ASP Series and BSP series 寡聚物IR鑑定 54
5.2 ASP及BSP Series 做法之比較 56
5.3成型秒數測試 57
5.4體積收縮率之測試 58
5.5熱性質分析 62
5.5.1 ASP series和BSP series熱性質分析 62
5.5.2 ASP series混入稀釋單體之熱性質比較 65
5.6黏度測試 74
第六章 結論 75
文獻資料 77
文獻資料
1.Brady, R. F., Volume Change in the Polymerization of Spirocyclic Monomers: Causes,
Effects, and Applications. Journal of Macromolecular Science, Part C: Polymer
Reviews 1992, 32 (2), p.135-181.
2.Bailey, W. J., et al., Ring-Opening Polymerization with Expansion in Volume. 1977,
59, p.38-59.
3.Jan, Y. D., et al., Conjugation of diisocyanate side chains to dimethacrylate reduces
polymerization shrinkage and increases the hardness of composite resins. J Formos
Med Assoc 2014, 113 (4), p.242-8.
4.Berlanga Duarte, M. L., et al., Biobased isosorbide methacrylate monomer as an
alternative to bisphenol A glycerolate dimethacrylate for dental restorative applications.
Journal of Applied Polymer Science 2017, 134 (11).
5.Bailey, W. J., et al., Free-Radical Ring-Opening Polymerization. Journal of
Macromolecular Science: Part A - Chemistry 2007, 21 (13-14), p.1611-1639.
6.Endo, T., Preparation and Ring-Opening Polymerization of Unsaturated Spiro Ortho
Esters. Journal of Polymer Science.Polymer Chemistry Edition 1981, 19.
7.Lee, J.-Y., et al., Fundamentals and applications of 3D printing for novel materials.
Applied Materials Today 2017, 7, p.120-133.
8.Dizon, J. R. C., et al., Mechanical characterization of 3D-printed polymers. Additive
Manufacturing 2018, 20, p.44-67.
9.吳淑美, 3D 列印未來發展趨勢.
證卷服務
2015, 637, p.79-81.
10.Additive manufacturing of ceramics. https://www.cttc.fr/en/expertises-en/additive-
manufacturing-of-ceramics/.
11.
五種常見
3D
列印技術及其優缺點對比
. https://read01.com/J0G8yP.html.
12.The free Biginners Guide - 3D Printing process. http://3dprintingindustry.com/3d-
printing-basics-free-beginners-quide/processes/.
13.DLP 3D 列 印 技 術 及 其 應 用 詳 解 .
https://read01.com/MmBMEG.html#.Wv_lE0iFNhE.
14.Digital Light Processing (DLP). https://www.think3d.in/digital-light-processing-
dlp-3d-printing-technology-overview/.
15.Formlabs 3D Printing Technology Comparison: SLA vs. DLP.
https://formlabs.com/blog/3d-printing-technology-comparison-sla-dlp/.
16.Decker, C., Photoinitiated crosslinking polymerisation. Progress in Polymer Science
(Oxford) 1996, 21 (4), p.593-650.
17.西酒保忠臣;廖德章譯,
高分子化學
. 高立圖書有限公司: 2014.
18.Decker, C., UV-radiation curing of adhesives. In Handbook of Adhesives and
78

Surface Preparation, 2011; pp 221-243.
19.Matyjaszewski, K.; Möller, M., Polymer Science: A Comprehensive Reference. 2012;
p p. 413-438.
20.Studer, K., et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings
by carbon dioxide inerting, Part I. Progress in Organic Coatings 2003, 48 (1), p.92-100.
21.Sangermano, M., et al., Cationic UV-curing: Technology and applications.
Macromolecular Materials and Engineering 2014, 299 (7), p.775-793.
22.Christmas, B., et al. In UV/EB CURING TECHNOLOGY: A SHORT HISTORY, 1986;
pp 331-337.
23.Cahill, V. J., A Short History and Current Development UV-curing for ink Jet
Printing. RadTech Report of RadTech International 2001, p.20-24.
24.劉建良, UV Curing 發展簡介及應用.
化工科技與商情
2003,

41

, p.1-4.
25.廖信銘, 負型光阻劑之合成及性質探討. (
碩士論文
)國立成功大學
1999.
26.Lewarchik, R. Improving Performance with Monomers and Oligomers.
https://knowledge.ulprospector.com/6731/pc-improving-performance-monomers-
oligomers/.
27.Sartormer Specialty acrylate resins.
https://emea.sartomer.com/en/products/specialty-acrylates-resins/.
28.王德海,
紫外光固化材料
-理論與應用
. 北京:科學出版社, 2001.
29.葉金泉, 紫外線硬化環氧樹脂合成. (
碩士論文
)國立成功大學
1986.
30.Kandelbauer, A., et al., Unsaturated Polyesters and Vinyl Esters. 2014, p.111-172.
31.劉姵君, 紫外光硬化聚氨基丙烯酸酯改變反應性 單體比例及官能基之性質研
究. (
碩士論文
)國立台北科技大學
2016.
32.Heller, C., et al., Additive Manufacturing Technologies for the 3D-fabrication of
biocompatible and biodegradable photopolymers. 2010, 1239, p.47-52.
33.Gfeller, W., et al., Overview of animal test methods for skin irritation. Food and
Chemical Toxicology 1985, 23 (2), p.165-168.
34.Database, P. P. FREE RADICAL PHOTOINITIATORS.
http://polymerdatabase.com/polymer%20chemistry/Photoinitiators1.html.
35.Moon, J. H., et al., A study on UV-curable adhesives for optical pick-up: I. Photo-
initiator effects. International Journal of Adhesion and Adhesives 2005, 25 (4), p.301-
312.
36.Kloosterboer, J. G., Advances in polymer science. New York: Springer-Verlag 1988,
p.1-61.
37.Ortyl, J.; Popielarz, R., New photoinitiators for cationic polymerization.
Polimery/Polymers 2012, 57 (7-8), p.510-517.
38.陳建帆,
高分子加工學
. 文享出版社, 1999.
39.吳丁凱
光硬化型樹脂的發展動向
; 光硬化型樹脂的發展動向 專題調查報告,
79

1987.
40.張智翔, 可製造陶瓷元件之上拉式光固化系統開發. (
碩士論文
)國立台北科技
大學
106.
41.第一化工, 油性染料之溶解度及固化後耐光、耐熱、耐酸鹼度.
42.Schwalm, R., UV_Coatings Basics, Recent Developments and New Applications.
Chapter 9 - Recent Developments. Elsevier Science, 2006.
43.Gotro, J. UV Curing Part Nine: “If You Can’t Measure It, You Can’t Manage It”. ~
Peter Drucker. https://polymerinnovationblog.com/uv-curing-part-nine-cant-measure-
cant-manage-peter-drucker/.
44.Schwalm, R., UV_Coatings Basics, Recent Developments and New Applications.
Chapter 2 The UV Curing Process. Elsevier Science, 2006.
45.Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-
Gel Processing. 2013; p 1-908.
46.彭永福, 以溶膠凝膠法製備 SiO-- 2 薄膜作 TFT 閘極絕緣層材料. (
博士論文
)國
立中山大學
2009.
47.林佳瑩, 以有機催化溶-凝膠反映製備有機-無機複合材料之研究. (
碩士論文
)國立交通大學
2007.
48.Geffers, M., et al., Organic/Inorganic Hybrid Nanoceramics Based on Sol-Gel
Chemistry. 2015, p.59-85.
49.Boehm, H. P., The Chemistry of Silica. Solubility, Polymerization. Angewandte
Chemie 1980, 92 (4), p.328-328.
50.Lee, A. S., et al., Mechanical properties of thiol-ene UV-curable thermoplastic
polysilsesquioxanes. Polymer 2015, 68, p.140-146.
51.楊文傑, 光固化樹脂配方之開發:高阻水氣性封裝材、薄膜平坦化塗裝材、低
收縮率列印材. (
碩士論文
)國立台北科技大學
2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top