跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠融
研究生(外文):Guan-Rong Chen
論文名稱:C平面氧化鋅/氧化鎂鋅多層量子井的受激輻射之偏振特性
論文名稱(外文):Polarization Characteristics of Stimulated Emissions from c-plane ZnO/ZnMgO Multiple Quantum Wells
指導教授:林家弘林家弘引用關係
指導教授(外文):Ja-Hon Lin
口試委員:林家弘劉維仁謝文峰賴暎杰
口試委員(外文):Ja-Hon LinWei-Rein LiuWen-Feng HsiehYin-Chieh Lai
口試日期:2018-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:多層量子井氧化鋅/氧化鎂鋅偏振特性受激輻射
外文關鍵詞:multiple quantum wellsZnO/ZnMgOpolarization characteristicsstimulated emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我研究利用脈衝雷射沉積技術所製作,具有十個週期結構且成長在c平面藍寶石基板上「氧化鋅/氧化鎂鋅多層量子井」的受激輻射光之偏振特性。其中量子井跟壁障的厚度分別約為2.5奈米和13.1奈米。接著,使用波長266奈米的Q開關脈衝雷射且重複頻率約10赫茲的脈衝激發樣品,可以觀察到多層量子井由「激子-激子散射」所產生的受激輻射光譜。在量子井邊緣輻射的量測中,我使用柱狀透鏡將泵激光脈衝聚焦在多層量子井上,使聚焦光束呈現長條紋,透過旋轉線性偏振片,量測受激輻射光的電場分量,證實受激輻射光為線性偏振的狀態,且偏極率大約為0.95,其中受激輻射光的電場方向與氧化鋅的c軸垂直,然而輻射光子的能量固定在3.287 eV左右;接著在較低泵激功率狀態下,發現量子井的自發輻射光不具有偏振的特性,並且證實由A-band到C-band的輻射光,其光子能量位移了35 meV。另外,我也使用柱狀透鏡進行多層量子井正向輻射之量測,發現量子井的受激輻射光仍具有偏振的特性,其偏極率約0.85,且受激輻射光的偏振方向與聚焦在樣品之長條紋互相垂直,但是與泵激光的偏振態無關,因此將此線性偏振受激輻射光的產生歸咎於波導的效應所造成光的侷限;為了證明波導效應對偏振的影響,我使用平凸球面透鏡來取代柱狀透鏡,可以將輻射光的偏極率下降到0.42。由於所使用的低重複頻率下的Q開關雷射,其輸出光束品質並不是一個完美的高斯分佈,因此部分的光波導效應使得受激輻射光仍具有部分偏振態。
In this work, we investigated the polarization properties of stimulated emission (SE) from ten-period ZnO/ZnMgO multiple quantum wells (MQWs) on a c-plane sapphire substrate, which was produced by the pulsed laser deposition technology. Through the excitation of 266 nm Q-switched laser with 10 Hz repletion rate, the SE can be excited owing to the exciton-exciton scattering (ex-ex scattering). The thickness of well and barrier of MQWs were about 2.5 nm and 13.1 nm, respectively. First, the edge emission measurement was carried out using a cylindrical lens to focus the pump beam onto the MQWs with a long line stripe. By rotating a linear polarization, the spectrum component of SE was measured to demonstrate that linear polarized light, with the degree of polarization about 0.95. In addition, the electric field of emission light was perpendicular to the c-axis of MQWs and the photon energy of SE was fixed at around 3.287 eV. At lower excitation energy, the spontaneous emission of MQWs was un-polarization and revealed the shift of photon energy about 35 meV from A-band to C-band. Using a cylindrical lens as a pump lens, a linear polarized emission light, with the degree of polarization about 0.85, was also revealed from normal emission of MQWs. Owing the waveguide effect, the polarization of the SE is perpendicular to the long line stripe of pump beam but independent on the pump polarization. In order to investigate the influence of waveguide effect, a plano-convex lens was used to replace the cylindrical lens and lower the polarization characteristic of SE with the degree of polarization about 0.42. Because of the relatively poor beam quality of the low repletion rate Q-switched laser, the waveguide effect can still exist to produce the polarized SE from MQWs through a plano-convex lens.
摘要 i
ABSTRACT iii
Acknowledgment v
Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Introduction and movtivation 1
1.1 Properties and applications of ZnO 1
1.2 Stimulated emission in semiconductor materials 2
1.3 Advantage of ZnO/ZnMgO multiple quantum wells 5
1.4 Polarization of stimulated emission from semiconductor materials 8
1.5 Motivation 10
Chapter 2 Theoretical background 11
2.1 Quantum confinement effect 11
2.2 Mechanism of exciton-exciton scattering 14
Chapter 3 Experimental setup 17
3.1 Sample preparation 17
3.2 Transmittance and reflectance experiment framework 18
3.3 Photoluminescence experiment framework 19
3.4 Stimulated emission experiment framework 20
3.4.1 Edge emission measurement 20
3.4.2 Normal emission measurement 21
Chapter 4 Results and discussion 22
4.1 Fundamental property of c-plane ZnO/ZnMgO MQWs 22
4.1.1 Transmission electron microscope and X-ray diffraction 22
4.1.2 Photoluminescence and absorbance spectrum 23
4.2 SE from edge emission of c-plane ZnO/ZnMgO MQWs 25
4.2.1 Exciton-exciton scattering from MQWs 25
4.2.2 Polarization characteristic of SE from edge emission of MQWs 26
4.3 SE from normal emission of c-plane ZnO/ZnMgO MQWs 33
4.3.1 Polarization characteristic of SE from normal emission of MQWs using cylindrical lens 33
4.3.2 Polarization characteristic of SE from normal emission of MQWs using plano-convex lens 40
Chapter 5 Conclusion 44
Reference 45
[1] C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Oxford, Elsevier Science, 2006, pp. 4-7.
[2] C. F. Klingshirn, Semiconductor Optics, Karlsruhe, Springer Science, 2012, pp. 150.
[3] N. N. Syrbu, I. M. Tiginyanu, V. V. Zalamai, V. V. Ursaki and E. V. Rusu, "Exciton polariton spectra and carrier effective masses in ZnO single crystals," Physica B-Condensed Matter, vol. 353, issue 1–2, 2004, pp. 111-115.
[4] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra and S. P. DenBaars, "Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements," Applied Physics Letters, vol. 71, issue 18, 1997, pp. 2572-2574.
[5] X. D. Wang, Y. Ding, C. J. Summers and Z. L. Wang, "Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts," The Journal of Physical Chemistry B, vol. 108, issue 26, 2004, pp. 8773-8777.
[6] X. D. Wang, C. J. Summers and Z. L. Wang, "Mesoporous Single‐Crystal ZnO Nanowires Epitaxially Sheathed with Zn2SiO4," Advanced Materials, vol. 16, issue 14, 2004, pp. 1215-1218.
[7] X. D. Wang, C. J. Summers and Z. L. Wang, "Large-Scale Hexagonal-Patterned
Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays," Nano Letters, vol. 4, issue 3, 2004, pp. 423-426.
[8] X. Y. Kong and Z. L. Wang, "Spontaneous Polarization-InducedNanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts," Nano Letters, vol. 3, issue 12, 2003, pp. 1625-1631.
[9] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and Yue Zhang, "Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces," Advanced Functional Materials, vol. 14, issue 10, 2004, pp. 943-956.
[10] X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, "Single-Crystal Nanorings Formed
by Epitaxial Self-Coiling of Polar Nanobelts," Science, vol. 303, 2004, pp. 1348-1351.
[11] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. Yao, B. H. Li, D. Z. Shen, J. Y. Zhang, D. X. Zhao and X. W. Fan, "The optical properties of ZnO/ZnMgO single quantum well grown by P-MBE," Applied Surface Science, vol. 254, issue 22, 2008, pp. 7303-7305.
[12] H. E. Brown, Zinc Oxide: Properties and Applications, New York, International Lead Zinc Research Organization, 1976, pp. 218.
[13] C. Agashe, O. Kluth, G. Schope, H. Siekmann, J. Hupkes and B. Rech, "Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications," Thin Solid Films, vol. 442, issue 1-2, 2003, pp. 167-172.
[14] H. K. Liang, S. F. Yu and H. Y. Yang, "ZnO random laser diode arrays for stable single-mode operation at high power," Applied Physics Letters, vol. 97, issue 24, 2010, pp. 241107.
[15] H. K. Liang, S. F. Yu and H. Y. Yang, "Directional and controllable edge-emitting ZnO ultraviolet random laser diodes.," Applied Physics Letters, vol. 96, issue 10, 2010, pp. 101116.
[16] L. Cao, B. Zou, C. Li, Z. Zhang, S. Xie and G. Yang, "Laser emission of low-threshold excitation from ZnO nanowires," A Letters Journal Exploring the Frontiers of Physics, vol. 68, issue 5, 2004, pp. 740-745.
[17] C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma and Y. C. Liu, "Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons," Nanoscale, vol. 7, issue 3, 2015, pp. 1073-1080.
[18] K. L. Shaklee and R. F. Leheny, "DIRECT DETERMINATION OF OPTICAL GAIN IN SEMICONDUCTOR CRYSTALS," Applied Physics Letters, vol. 18, issue 11, 1973, pp. 475.
[19] S. Kurai, A. Kawabe, T. Sugita, S. Kubo, Y. Yamada, T. Taguchi and S. Sakai, "Excitonic Emissions under High Excitation of Hexagonal GaN Single Crystal Grown by Sublimation Method," Japanese Journal of Applied Physics, vol. 38, part 38, number 2A, 1999, pp. 102-104.
[20] I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka and M. Koike, "Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device," Japanese Journal of Applied Physics, vol. 34, part 2, number 11B, 1995, pp. 1517-1519.
[21] H. J. Choi, J. C. Johnson, R. He, S. K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally and P. Yang, "Self-Organized GaN Quantum Wire UV Lasers," The Journal of Physical Chemistry B, vol. 107, issue 34, 2003, pp. 8721-8725.
[22] S. Tanaka, H. Hirayama and Y. Aoyagi, "Stimulated emission from optically pumped GaN quantum dots," Applied Physics Letters, vol. 71, issue 10, 1997, pp. 1299.
[23] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, "Single gallium nitride nanowire lasers," Nature Materials, vol. 1, issue 2, 2002, pp. 106-110.
[24] Y. F. Chen, D.M. Bagnall, Z. Zhu, T. Sekiuchi, K. T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen and T. Goto, "Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy," Journal of Crystal Growth, vol. 181, issue 1-2, 1997, pp. 165-169.
[25] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto and T. Yao, "Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE," Journal of Crystal Growth, vol. 184-185, 1998, pp. 605-609.
[26] D. M. Bagnall, Y. F. Chen, Z. Zhu and T. Yao, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Applied Physics Letters, vol. 73, issue 8, 1998, pp. 1038.
[27] Z. K. Tang, G. K. L. Wong and P. Yu, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, issue 25, 1998, pp. 3270.
[28] M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z.K. Tang, P. Yu, G.K.L. Wong, B.P. Zhang and Y. Segawa, "Excitonic ultraviolet laser emission at room temperature fromnaturally made cavity in ZnO nanocrytal thin films," Materials Science and Engineering, vol. 56, issue 2-3, 1998, pp. 239-245.
[29] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Proceedings of 23rd International Conference on the Physics of Semiconductors, Berlin, 1996, pp. 1453.
[30] X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu and W. Jaeger, "Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si (111) substrates," Applied Physics Letters, vol. 91, issue 2, 2007, pp. 022103.
[31] H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, "Stimulated emission induced by exciton–exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature," Applied Physics Letters, vol. 77, issue 26, 2000, pp. 4250.
[32] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. T. Doninelli, B. Vinter and C. Deparis, "Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells," Physical Review B, vol. 72, issue 24, 2005, pp. 241305.
[33] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, "Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells," Journal of Applied Physics, vol. 91, issue 4, 2002, pp. 1993.
[34] A. A. Lotin, O. A. Novodvorsky and D. A. Zuev, "Room-temperature stimulated emission in two-dimensional MgxZn1-xO/ZnO heterostructures under optical pumping," Laser Physics Letters, vol. 10, issue 5, 2013, pp. 055902.
[35] T. Takano, Y. Narita, A. Horiuchi and H. Kawanishi, "Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser," Applied Physics Letters, vol. 84, issue 18, 2004, pp. 3567.
[36] H. Kawanishi, M. Senuma and T. Nukui, "Anisotropic polarization characteristics of lasing and spontaneous surface and edge emissions from deep-ultraviolet (λ = 240 nm) AlGaN multiple-quantum-well lasers," Applied Physics Letters, vol. 89, issue 4, 2006, pp. 041126.
[37] T. Wunderer, C. L. Chua, J. E. Northrup, Z. Yang, N. M. Johnson, M. Kneissl, G. A. Garrett, H. Shen, M. Wraback, B. Moody, H. S. Craft, R. Schlesser, R. F. Dalmau and Z. Sitar, "Optically pumped UV lasers grown on bulk AlN substrates," Physica Status Solidi C, vol. 9, issue 3-4, 2012, pp. 822-825.
[38] X. H. Li, T. Detchprohm, T. T. Kao, Md. M. Satter, S. C. Shen, P. D. Yoder, R. D. Dupuis, S. Wang, Y. O. Wei, H. Xie, A. M. Fischer, F. A. Ponce, T. Wernicke, C. Reich, M. Martens and M. Kneissl, "Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiplequantum-well lasers grown on sapphire substrates," Applied Physics Letters, vol. 105, issue 14, 2014, pp. 141106.
[39] S. V. Ivanov, D. V. Nechaev, A. A. Sitnikova, V. V. Ratnikov, M. A. Yagovkina, N. V. Rzheutskii, E. V. Lutsenko and V. N. Jmerik. "Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3," Semiconductor Science and Technology, vol. 29, issue 8, 2014, pp. 084008.
[40] Y. Tian, J. Yan, Y. Zhang, X. Chen, Y. Guo, P. Cong, L. Sun, Q. Wang, E. Guo, X. Wei, J. Wang, J. Li, "Stimulated emission at 288 nm from silicondoped AlGaN-based multiple-quantum-well laser," Optics Express, vol. 23, issue 9, 2015, pp. 11334-11340.
[41] J. Zhang, H. Zhao and N. Tansu, "Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers," Applied Physics Letters, vol. 97, issue 11, 2010, pp. 111105.
[42] X. H. Li, T. T. Kao, Md. M. Satter, Y. O. Wei, S. Wang, H. Xie, S. C. Shen, P. D. Yoder, A. M. Fischer, F. A. Ponce, T. Detchprohm and R. D. Dupuis, " Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate," Applied Physics Letters, vol. 106, issue 4, 2015, pp. 041115.
[43] M. Lachab, W. Sun, R. Jain, A. Dobrinsky, M. Gaevski, S. Rumyantsev, M. Shur and M. Shatalov, "Optical polarization control of photo-pumped stimulated emissions at 238nm from AlGaN multiple-quantum-well laser structures on AlN substrates," Applied Physics Express, vol. 10, issue 1, 2016, pp. 012702.
[44] T. Wunderer, C. L. Chua, Z. Yang, J. E. Northrup, N. M. Johnson, G. A. Garrett, H. Shen and M. Wraback, "Pseudomorphically Grown Ultraviolet C Photopumped Lasers on Bulk AlN Substrates," Applied Physics Express, vol. 4, issue 9, 2011, pp. 092101.
[45] Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, "Self-assembled ZnO nano-crystals and exciton lasing at room temperature," Journal of Crystal Growth, vol. 287, issue 1, 2006, pp. 169-179.
[46] W. R. Liu, J. H. Lin, J. S. Chen, H. M. Cheng, S. J. Li, H.R. Chen, C. H. Hsuad and W. F. Hsieh, "Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells," RSC Advances, vol. 8, issue 15, 2018, pp. 7980-7987.
[47] M. Leroux, N. Grandjean, M. Laugt, and J. Massies, B. Gil, P. Lefebvre and P. Bigenwald, "Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells," Physical Review B, vol. 58, issue 20, 1998, pp. 13372.
[48] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Hoboken, John Wiley & Sons, 2007, pp. 497-503.
[49] H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, "Phonon replicas in ZnOÕZnMgO multiquantum wells," Journal of Applied Physics, vol. 91, issue 10, 2002, pp. 6457.
[50] Johann Christian Poggendorff, "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten," Annalen der Physik, vol. 162, issue 5, 1852, pp. 78-88.
[51] J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan, "Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate," Journal of Physics D: Applied Physics, vol. 40, issue 21, 2007, pp. 6541-6544.
電子全文 電子全文(網際網路公開日期:20230731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top