跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林頌軒
研究生(外文):Lin,Sung-Shiuan
論文名稱:真空熱壓燒結製程對鉻矽合金其顯微組織與材料特性之影響
論文名稱(外文):Effects of the Vacuum Hot-Press Sintering Process on the Microstructures and Material Characteristics of Cr-Si alloys
指導教授:張世賢張世賢引用關係
口試委員:張世賢
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:96
中文關鍵詞:破裂韌性電導率硬度熱壓燒結粉末冶金鉻矽合金
外文關鍵詞:Fracture ToughnessElectrical ConductivityHardnessHot-Press SinteringPowder MetallurgyCr-Si Alloy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
鉻矽合金薄膜由於具有高電阻率、低溫度電阻係數、良好的熱穩定性以及長期可靠性等優越性質,使其廣泛應用於電流電阻的技術領域。而現今的電阻薄膜幾乎都是在陶瓷或玻璃基材上,藉由使用不同靶材的磁控濺鍍等方式,將薄膜蒸鍍於基材表面,所以濺鍍靶材的品質好壞,會間接影響鍍膜的性質。部分的靶材都是由鑄造製得,因為金屬具有低熔點和良好的韌性;然而,對於具有活性且硬脆性質之鉻和矽而言,在鑄造的過程中,兩者的熔點相當高,且易氧化和出現裂痕,甚至會與坩堝材質發生反應,並不適用。因此,通常以粉末冶金製程製造為主,其可提供許多優點,像是改善化學不均勻性、避免晶粒粗大化,以及在樹枝狀區域產生硬質析出物之微結構等。此外,真空熱壓燒結是一種傳統燒結與加壓成形同時進行的一種複合式粉末冶金技術,透過石墨模具將壓力傳遞至粉末,同時進行壓製與燒結,此方法有助於在相對較低的燒結溫度下,形成較為緻密的材料。因此,本實驗將利用粉末冶金法之真空熱壓燒結製程製備鉻矽合金。
本研究係以真空熱壓燒結法製備鉻矽合金,將不同含量的微米鉻粉(2 μm)與矽粉(2 μm)進行球磨混合,並利用不同熱壓燒結溫度(1100°C、1150°C、1200°C、1250°C和1300°C)與不同熱壓壓力(20~50 MPa),尋求真空熱壓燒結製程對鉻矽合金(Cr-60 wt% Si與Cr-50 wt% Si)之最佳參數,並探討顯微組織與材料特性之差異。
第一部分的實驗結果顯示,最佳的參數為燒結溫度1200°C、壓力50 MPa及持壓時間1小時,此製程所生產之Cr-60 wt%Si合金具有最佳的機械性質及電導率,其燒結密度達到4.07 g·cm-3,硬度及橫向破裂強度分別為82.7 HR30N及84.99 MPa,且電導率為1.67×104 S·m-1。而在第二部分實驗中,就整體而言最佳的參數為燒結溫度1250°C、壓力40 MPa及持壓時間1小時,此製程所生產之Cr-50 wt% Si合金有適當之機械性質與電導率,其燒結密度增加至4.84 g·cm-3,硬度、橫向破裂強度及破裂韌性分別為87.7 HR30N、261.35 MPa和3.81 MPa·m1/2,而電導率為1.94×105 S·m-1。綜合上述結果顯示,利用熱壓燒結能夠有助於鉻矽合金之燒結行為,並在較低的燒結溫度下,能夠有效地改善其機械性質。
Cr-Si thin films are widely used in current resistor technology due to their excellent properties, such as high resistivity, low temperature coefficient of resistance, high thermal stability and good long-term reliability. The conductive film of thin film resistors is formed on ceramic or glass matrix by using the different targets of magnetron sputtering. As a result, the performance of thin film resistors depends largely on the qualities of their sputtering targets. Most targets can be made by casting due to their low melting point and proper toughness. However, in the case of chromium and silicon which are active and brittle, their melting points are quite high and they both tend to become oxidized and crack, and even react with the crucible. Accordingly, the powder metallurgy (P/M) route offers several advantages: eliminating casting defects such as chemical inhomogeneity, large grain size and microstructure with hard precipitates in the interdendritic zones. Furthermore, vacuum hot-press sintering is a complex method which combines conventional sintering and pressing processes, whereby the material is directly pressed and sintered through a graphite mold to transmit the pressure onto the powder, which makes it possible to obtain densified material at a relatively low sintering temperature. Therefore, in this study, a Cr-Si alloy was fabricated by means of the vacuum hot-press sintering process of powder metallurgy technology.
In this work, Cr-Si alloys were fabricated by vacuum hot-press sintering. Different amounts of micron silicon powders (2 μm) and micron chromium powders (2 μm) were mixed, respectively, by ball milling. The experiments utilized various hot-press pressures (20, 30, 40 and 50 MPa) and hot-press sintering temperatures (1100°C, 1150°C, 1200°C, 1250°C and 1300°C) to find the optimal parameters for different Cr-Si alloys (Cr-60 wt% Si and Cr-50 wt% Si), while simultaneously investigating the differences in microstructures and characteristics.
The first part of the experimental results shows that the optimal parameters of hot-press sintering Cr-60 wt% Si alloys were 1200°C at 50 MPa for 1 h. It had good mechanical properties and conductivity. The sintering density reached 4.07 g·cm-3, and the hardness and TRS reached 82.7 HR30N and 84.99 MPa, respectively. Moreover, the electrical conductivity was 1.67×104 S·m-1. The optimal parameters of the second part of the research were 1250°C at 40 MPa for 1 h. Clearly, Cr-50 wt% Si alloys possess the optimal mechanical properties and electrical conductivity. Among them, the sintering density was enhanced to 4.84 g·cm-3, and the hardness, KIC and TRS reached 87.7 HR30N, 261.35 MPa, and 4.59 MPa·m1/2, respectively. The electrical conductivity was 1.94×105 S·m-1. According to the above discussion and results, it is reasonable to conclude that effectively enhancing sintering behavior and improving the mechanical properties of Cr-Si alloys at a relatively lower sintering temperature by the hot-press sintering process was realized.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻回顧 3
2.1 金屬矽化物製程之發展 3
2.1.1 金屬矽化物之優點 3
2.1.2 金屬矽化物的缺點與改善 4
2.1.3 金屬矽化物薄膜的形成及特性應用 4
2.2. 鉻矽合金 5
2.2.1 鉻矽合金系統之結晶結構 5
2.2.2 鉻矽合金薄膜的應用 6
2.2.3 濺鍍靶材 7
2.3 燒結原理 10
2.3.1 燒結概論 10
2.3.2 燒結過程與驅動力 10
2.3.3 燒結應力 12
2.3.4 固相燒結機制 14
2.3.5 影響燒結之因素 17
2.4 真空熱壓燒結(Vacuum Hot-Press Sintering)製程 19
2.4.1 真空燒結 19
2.4.2 熱壓燒結 20
第三章 實驗流程與研究方法 25
3.1 實驗步驟與流程 25
3.1.1 真空熱壓燒結 27
3.2 性質分析 30
3.2.1 粉末形貌分析 30
3.2.2 X-ray繞射分析 30
3.2.3 相對密度量測 31
3.2.4 視孔隙率量測 32
3.2.5 金相顯微組織觀察 33
3.2.6 晶粒尺寸量測 33
3.2.7 SEM顯微結構及成份分析 34
3.2.8 硬度試驗 34
3.2.9 橫向破裂強度試驗 35
3.2.10 電導率量測 36
3.2.11 破裂韌性 37
3.2.12 TEM顯微結構分析 38
第四章 結果與討論 40
4.1 球磨混合前後之Cr-Si粉末形貌與粒徑大小 40
4.2 不同熱壓燒結溫度對Cr-60 wt% Si合金之影響 43
4.2.1 不同溫度之Cr-60 wt% Si合金顯微組織結構分析 43
4.2.2 真空熱壓燒結溫度對Cr-60 wt% Si合金電性之影響 49
4.2.3 機械性質測試 51
4.2.4 不同熱壓燒結溫度對Cr-60 wt% Si合金之影響小結 54
4.3 不同熱壓燒壓力對Cr-60 wt% Si合金之影響 55
4.3.1 不同壓力之Cr-60 wt% Si合金顯微組織結構分析 55
4.3.2 不同熱壓燒結壓力對Cr-60 wt% Si合金電性之影響 60
4.3.3 機械性質測試 61
4.3.4 不同熱壓燒結壓力對Cr-60 wt% Si合金之影響小結 64
4.4不同熱壓燒結溫度對Cr-50 wt% Si合金之影響 65
4.4.1 不同溫度之Cr-50 wt% Si和金顯微結構分析 65
4.4.2 真空熱壓燒結溫度對Cr-50 wt%-Si合金電性之影響 71
4.4.3 機械性質測試 72
4.4.4 不同熱壓燒結壓力對Cr-50 wt% Si合金之影響小結 77
4.5 不同熱壓壓力對Cr-50 wt%-Si合金之影響 78
4.5.1 不同壓力之Cr-50 wt%-Si合金顯微組織結構分析 78
4.5.2 真空熱壓燒結壓力對Cr-50 wt%-Si合金電性之影響 82
4.5.3 機械性質測試 83
4.5.4 TEM顯微結構觀察 87
第五章 結論 90
參考文獻 92
[1]G. J. Cui, J. R. Han and G. X. Wu, "High-temperature wear behavior of self-lubricating Co matrix alloys prepared by P/M," Wear, vol. 346-347, 2016, pp. 116-123.
[2]H. F. Lu, Q. Miao, W. P. Liang, F. Wang, Z. Ding and J. J. Xia, "High-temperature tribological behaviors of a Cr-Si co-alloyed layer on TA15 alloy," Chinese Journal of Aeronautics, vol. 30, Issue 2, 2017, pp. 846-855.
[3]T. S. R. Ch. Murthy, J. K. Sonber, C. Subramanian, R. K. Fotedar, S. Kumar, M. R. Gonal and A. K. Suri, "A new TiB2 + CrSi2 composite - Densification, characterization and oxidation studies," International Journal of Refractory Metals and Hard Materials, vol. 28, 2010 pp. 529-540.
[4]X. Y. Wang, Z. S. Zhang and T. Bai, "Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance," Materials and Design, vol. 31, 2010, pp. 1302-1307.
[5]C. H. Tam, S. C. Lee, S. H. Chang, T. P. Tang, H. H. Ho and H. Y. Bor, "Effects of the temperature of hot isostatic pressing treatment on Cr-Si targets," Ceramics International, vol. 35, 2009, pp. 565-570.
[6]http://ic.tpex.org.tw/introduce.php?ic=D000&stk_code=1410,產業價值鏈資訊平台, 2018
[7]譚中雄,以真空燒結與熱壓及熱均壓製備Cr-Si靶材及其特性之研究,博士論文,國立成功大學材料科學及工程學系,台南,2009。
[8]莊達人,VLSI製造技術,高立圖書,1994。
[9]黃泓憲,Cr-Si合金顯微結構與薄膜電性研究,碩士論文,國立台北科技大學,材料科學與工程學研究所,台北,2009。
[10]H. Nagai, T. Takamatsu, Y. Iijima, K. Hayashi, Y. Miyazaki, "Effects of Nb substitution on thermoelectric properties of CrSi2," Journal of Alloys and Compounds, vol. 687, 2016, pp. 37-41.
[11]X. Y. Wang, Z. S. Zhang, J. Q. Shao, T. Bai, "Effects of metal Ni with catalytic activity on magnetron sputtered Cr-Si resistive film in a heat and humid environment," Surface and Coatings Technology, vol. 205, 2010, pp. 2611-2617.
[12]https://read01.com/J0ERAzR.html,中國鋼研戰略所,2018
[13]黃坤祥,粉末冶金學,新竹縣竹東鎮:中華民國粉末冶金協會,2001,第137-155頁,第234-237頁。
[14]黃信二、顧均豪、林於隆等,「相變化光碟及硫屬紀錄合金靶材之發展與應用」,粉末冶金會刊,第二十八卷,第一期,2003,第28-38頁。
[15]S. H. Chang, S. C. Lee, C. H. Tam, K. T. Huang, C. Liang and F. C. Tai, "Effects of vacuum sintering temperature on mechanical properties and electric resistance for Cr50–Si50 optical target," Powder Metallurgy, vol. 54, 2011, pp. 325-330.
[16]R. L. Coble, "Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts," Journal of Applied Physics, vol. 32, 1961, pp. 793-799.
[17]阮建明、黃培云主編,粉末冶金原理,北京市:機械工業出版社,2012,第221-223頁,第245-263頁。
[18]伍祖璁、黃錦鐘譯,粉末冶金,台北市:高立圖書有限公司,2000,第171-232頁。
[19]張世賢、李世欽等,「真空燒結對Cr35-Si65與Cr50Si50合金靶材機械性質及電阻特性之研究」,粉末冶金會刊,第三十四卷,第一期,2009,第3-12頁。
[20]R. L. Coble, "Intermediate-State Sintering: Modification and Final State Diffusion Models," Journal of Applied Physics, vol. 36, 1965, pp. 2327.
[21]黃坤祥,粉末冶金學,新竹縣竹東鎮:中華民國粉末冶金協會,2001,第137-155頁,第238-239頁。
[22]G. C. Kuczynski, "Self-Diffusion in sintering of metallic particles," Metals Transactions, vol. 185, 1949, pp. 169-178.
[23]蘇英源、郭金國,粉末冶金學,台北市:全華科技圖書股份有限公司,2001,第5.11-6.3頁。
[24]R. M. German, Sintering Theory and Practice, New York: Wiley Inter science Publication, 1996, pp. 67-95.
[25]R. M. German, Powder Metallurgy Science, New Jersey: Metal Powder Industries Federation, 1994, pp. 242-251.
[26]J. G. Yoo and Y. M. Jo, "Finding the optimum binder for fly ash palletization," Fuel Processing Technology, vol. 81, 2003, pp. 173-186.
[27]S-J. L. Kang, W. A. Kaysser, G. Petzow and D. N. Yoon, "Liquid phase sintering of Mo-Ni alloys for elimination of isolated pores," Modern Developments in Powder Metallurgy, vol. 15, 1985, pp. 477-488.
[28]C. S. Nordahl and G. L. Messing, "Transformation and densification of nanocrystalline θ-alumina during sinter forging," Journal of the American Ceramic Society, vol. 79, 1996, pp. 3149-3154.
[29]M. Erol, U. Demirler, S. Küçükbayrak, A. Ersoy-Meriçboyu and M. L. Öveçoĝlu, "Characterization investigations of glass-ceramics developed from Seyitömer thermal power plant fly ash," Journal of the European Ceramic Society, vol. 23, 2003, pp. 757-763.
[30]Randall M. German, Sintering: From Empirical Observations to Scientific Principles, Oxford: Butterworth-Heinemann Elsevier Ltd., 2014, pp. 305-339.
[31]嚴彪、吳菊清、李祖德及葛昌純主編,現代粉末冶金手冊,台北:化學工業出版社,2013,第218頁。
[32]黃中人,真空熱壓燒結製程應用於奈米鉻銅靶材其成形機構、顯微組織及特性研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2014。
[33]張世賢,Inconel 718與713LC超合金熱均壓製程參數及特性研究,博士論文,國立成功大學材料科學及工程學系,台南,2006。
[34]C. H. Tam, S. C. Lee, S. H. Chang and F. C Tai, "Effects of HIP Treatment on the Microstructure and Properties of Cr35-Si65 Target," Materials Transactions, vol. 50, 2009, pp. 395-400.
[35]S. H. Chang and S. L. Chen, "Characterization and properties of sintered WC-Co and WC-Ni-Fe hard metal alloys," Journal of Alloys and Compounds, vol. 585, 2014, pp. 407-413.
[36]張伯瑜,真空燒結及熱均壓處理對奈米碳化鎢超硬合金燒結性質與顯微結構之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2013。
[37]T. Dasgupta and A. M. Umarji, "Role of milling parameters and impurity on the thermoelectric properties of mechanically alloyed chromium silicide," Journal of Alloys and Compounds, vol. 461, 2008, pp. 292-297.
[38]Y. Ogino, S. Murayama and T. Yamasaki, "Influence of milling atmosphere on amorphization of chromium and Cr-Cu powders by ball milling," Journal of the Less-Common Metals, vol. 168, 1991, pp. 221-235.
[39]黃坤祥,粉末冶金學,新竹縣竹東鎮:中華民國粉末冶金協會,2001,第55-57頁,第75-77頁。
[40]張智堯,真空熱壓燒結製程對鈷鉻合金其顯微組織與材料特性之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2017。
[41]H. Chen, Y. Du and J. C. Schuster, "On the melting of Cr5Si3 and update of the thermodynamic description of Cr-Si," Computer Coupling of Phase Diagrams and Thermochemistry, vol. 33, 2009, pp. 211-214.
[42]A. K. Shukla, S. V. S. Narayana Murty, R. S. Kumar and K. Mondal, "Effect of powder milling on mechanical properties of hot-pressed and hot-rolled Cu-Cr-Nb alloy," Journal of Alloys and Compounds, vol. 580, 2013, pp. 427-434.
[43]李健綸,真空熱壓燒結製程及Laves相TiCr2對鉻鈦合金其顯微組織與材料特性之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2016。
[44]林謙田,顯微組織對Al-Cr合金靶材濺鍍行為之影響,碩士論文,國立成功大學材料科學及工程學系,台南,2003。
[45]鍾群彭及趙子華,斷口學,北京:高等教育出版社,2006,第184-203頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊