跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃祺予
研究生(外文):Chi-Yu Huang
論文名稱:L10 MnGa薄膜於玻璃基板之磁性質及微結構研究
論文名稱(外文):Magnetic properties and microstructure of L10 MnGa thin films on glass substrate
指導教授:孫安正王錫福
指導教授(外文):An-Cheng SunSea-Fue Wang
口試委員:徐永富朱瑾
口試委員(外文):Yung-Fu HsuJinn Chu
口試日期:2018-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:91
中文關鍵詞:L10序化相鐵磁薄膜
外文關鍵詞:L10 order phaseferromagnetismthin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以磁控濺鍍法沉積MnGa薄膜於玻璃基板時,磁性質以及微結構之間的關係,並且分為三個部分進行討論。第一部分是固定MnGa薄膜的膜厚為200 nm,改變基板生長溫度(Ts),比較不同溫度時磁性質以及微結構的變化,可以發現MnGa薄膜的序化溫度界於 Ts = 300 ~ 325 ℃,並且通過XRD及TEM分析可以發現薄膜是趨向沿著(111)方向進行生長,所以磁性質顯現等向性,而於Ts = 600 ℃,得到最佳性質。
第二部分進行固定Ts = 600 ℃下,改變MnGa薄膜厚度,進行不同厚度對於磁性質以及微結構的影響,而膜層厚度降低的情況下,各項磁性質皆有下降的趨勢,並且當薄膜厚度低於10 nm時已經無法量測到磁性質,可以得知MnGa薄膜轉變為L10相的極限膜厚為25 nm,並且通過XRD及TEM分析可以發現薄膜是趨向沿著(111)方向進行生長,所以磁性質顯現等向性。
第三部分使用RTA製程,進行RTA製程對於MnGa薄膜的磁性質以微結構的影響,發現使用RTA製程時,磁性質沒有使用臨場退火時來的優異,可能是兩者的磁化機制有所不同,所以形成的性質也有所差異。而當Ts大於500 ℃,MnGa薄膜氧化,無法順利形成L10相,而磁性質相當微弱。
This thesis investigated the magnetic properties and microstructure of MnGa thin films deposited on glass substrate by a high vacuum magnetron sputtering system. There are three parts in our experiment. In first part, we report the magnetic properties and microstructure of L10-type MnGa thin films deposited on amorphous glass substrate at different substrate temperature (Ts). Our results are sufficient to demonstrate that the order-disorder temperature of MnGa thin film is between 300 and 325 ℃. XRD and TEM analysis showed that thin film tends to grow along the (111) direction, so the magnetic properties show isotropic. When Ts = 600 ℃, MnGa film gets the best magnetic properties.
In the second part, we keep Ts to 600 ℃, and investigate the magnetic properties and microstructure of MnGa thin films deposited on glass substrate with different thin films thickness. When thickness was reduce, the magnetic properties reduce too. As the thickness reduce to 10 nm, no magnetic property was detected. Thus, it can be say when MnGa thin films transform to L10 phase, the thickness is 25 nm at least.
In the third part, we investigated the magnetic properties of MnGa thin films which are annealed by RTA. We found that the magnetic properties using the RTA process are worse than the film using in-situ annealing, because different reversal mechanisms in the two heat treatments. When Ts = 500 ℃, MnGa thin film became oxidation, it couldn’t transform to L10 phase well, and its magnetic properties were poor.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
第一章 序論 1
1-1 前言 1
1-2 磁記錄的發展史與簡介 1
1-3 研究背景及動機 7
第二章 理論基礎與文獻回顧 8
2-1 磁性基礎理論 8
2-1-1 基礎磁學 8
2-1-2 磁滯曲線 10
2-1-3 磁異向性 12
2-1-3-1磁晶異向性 12
2-1-3-2形狀異向性 16
2-1-3-3應力異向性 16
2-1-3 超順磁效應 16
2-2 MnGa晶體結構介紹 18
2-2-1 MnGa相圖簡介 18
2-2-2 MnGa結構介紹 20
2-2-2-1 L10 MnGa介紹 20
2-2-2-2 D022 Mn3-δGa介紹 21
2-2-3 序化與非序化 22
2-3 薄膜成長理論 23
2-3-1 薄膜的成長步驟 23
2-3-2 薄膜的成長模式 24
2-4 文獻回顧 25
2-4-1 L10 FePt鍍製於非晶質基板 25
2-4-2 膜厚影響之於L10 FePt鍍製於非晶質基板 29
2-4-3 L10 MnGa薄膜相關文獻 32
第三章 實驗流程與儀器簡介 38
3-1 實驗流程 38
3-2 靶材選擇 38
3-3 基板清洗 39
3-4 薄膜沉積 39
3-4-1 實驗設備 39
3-4-1-1高真空濺鍍系統 39
3-4-1-2 快速退火爐(Rapid Thermal Annealing, RTA) 41
3-4-2 樣品製備 42
3-4-3 實驗設計 43
3-4-3-1 MnGa薄膜於玻璃基板之序化溫度與微結構探討 43
3-4-3-2 薄膜厚度對於MnGa薄膜之影響 43
3-4-3-3 RTA製程對於MnGa薄膜影響 44
3-5試片分析 45
3-5-1 成份分析 45
3-5-2 膜厚及粗糙度分析 46
3-5-3 晶體結構分析 48
3-5-4 磁性質分析 50
3-5-5 微結構分析 53
第四章 結果與討論 56
4-1 薄膜成分及薄膜厚度分析 56
4-1-1薄膜成分分析 56
4-1-2薄膜沉積速率分析 56
4-2 MnGa薄膜於玻璃基板之序化溫度與微結構探討 58
4-2-1 XRD晶體結構繞射分析 58
4-2-2 VSM磁性質分析 62
4-2-3 SQUID磁性質分析 66
4-2-3 AFM粗糙度分析 67
4-2-4 TEM微結構分析 70
4-3 薄膜厚度對於MnGa薄膜之影響 72
4-3-1 XRD晶體結構繞射分析 72
4-3-2 VSM磁性質分析 74
4-3-3 AFM粗糙度分析 77
4-3-4 TEM微結構分析 80
4-4 RTA製程對於MnGa薄膜影響 81
4-4-1 XRD晶體結構繞射分析 81
4-4-2 VSM磁性質分析 83
4-4-3不同熱處理的磁化機制比較 85
第五章 結論 87
5-1 MnGa薄膜於玻璃基板之序化溫度與微結構探討 87
5-2薄膜厚度對於MnGa薄膜之影響 87
5-3 RTA製程對於MnGa薄膜影響 87
第六章 未來工作 89
6-1各樣品TEM Planview 分析 89
6-2爐冷退火與RTA以及臨場加溫製程之間的差異比較 89
參考文獻 90
[1]引用來自於http://www.computerhistory.org/storageengine/first-commercial-hard-
disk-drive-shipped/.
[2]引用來自於https://www-03.ibm.com/ibm/history/exhibits/storage/storage_PH11-
52.html.
[3]R. Wood, "Future hard disk drive systems," Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 555-561, 2009.
[4]引用來自於"IDEMA".
[5]S. I. IWASAKI and Y. NAKAMURA, "An analysis for the magnetization mode for high density magnetic recording," IEEE Transactions on Magnetics, Vol. MAG-13, 1977.
[6]引用來自於"G. S. Technologies".
[7]A. C. Sun, C. F. Huang, and S. H. Huang, "Enhance the coercivity of the rhombohedral lattice L11 CoPt thin film on glass substrate," Journal of Applied Physics, Vol. 115, p. 17B720, 2014.
[8]B. D. Cullity and C. D. Graham, "Introduction to magnetic materials," pp. 197-240, 2009.
[9]金重勳,"磁性技術手冊",中華民國磁性技術協會,2002.
[10]K. Minakuchi, R. Y. Umetsu, K. Ishida, and R. Kainuma, "Phase equilibria in the Mn-rich portion of Mn–Ga binary system," Journal of Alloys and Compounds, Vol. 537, pp. 332-337, 2012.
[11]X. S. Lu, J. K. Liang, T. J. Shi, and M. Q. Zhou, "A X-RAY INVESTIGATION OF THE MANGANESE-GALLIUM SYSTEM," Acta Physica Sinica, pp. 469-484, 1980.
[12]E. Wachtel and K. J. Nier, "Magnetic investigation of the manganese-gallium system in the solid and liquid state," Zeitschrift fuer Metallkunde, pp. 779-789 1965.
[13]D. E. Laughlin, K. Srinivasan, M. Tanase, and L. Wang, "Crystallographic aspects of L10 magnetic materials," Scripta Materialia, Vol. 53, pp. 383-388, 2005.
[14]H. Niida, T. Hori, H. Onodera, Y. Yamaguchi, and Y. Nakagawa, "Magnetization and coercivity of Mn3−δGa alloys with a D022-type structure," Journal of Applied Physics, Vol. 79, p. 5946, 1996.
[15]H. Lee, H. Sukegawa, S. Mitani, and K. Hono, "Order parameters and magnetocrystalline anisotropy of off-stoichiometric D022 Mn2.36Ga epitaxial films grown on MgO (001) and SrTiO3 (001)," Journal of Applied Physics, Vol. 118, p. 033904, 2015.
[16]B. E. Warren, "X-ray Diffraction," Dover Publications, 1990.
[17]P. B. Barna and M. Adamik, "GROWTH MECHANISMS OF POLYCRYSTALLINE THIN FILMS," Science and Technology of Thin Films, Vol. ch.1, p. 4, 1995.
[18]E. Alfonso, J. Olaya, and G. Cubillos, "Thin Film Growth Through Sputtering Technique and Its Applications," 2012.
[19]M. Weisheit, L. Schultz, and S. Fähler, "Textured growth of highly coercive L10 ordered FePt thin films on single crystalline and amorphous substrates," Journal of Applied Physics, Vol. 95, pp. 7489-7491, 2004.
[20]A. C. Sun, P. C. Kuo, J. H. Hsu, H. L. Huang, and J.-M. Sun, "Epitaxial growth mechanism of L10 FePt thin films on Pt∕Cr bilayer with amorphous glass substrate," Journal of Applied Physics, Vol. 98, p. 076109, 2005.
[21]A. C. Sun, J. H. Hsu, P. C. Kuo, H. L. Huang, H. C. Lu, and S. F. Wang, "Thickness limit in perpendicular magnetic anisotropy L10 FePt(001) thin film," Journal of Magnetism and Magnetic Materials, Vol. 310, pp. 2650-2652, 2007.
[22]J. S. Kim and Y. M. Koo, "Thickness dependence of (001) texture evolution in FePt thin films on an amorphous substrate," Thin Solid Films, Vol. 516, pp. 1147-1154, 2008.
[23]W. Cheng, S. Jiang, W. Xu, Y. Hui, H. Wang, J. Chen, et al., "Effect of Annealing Temperature on the Microstructure and Magnetic Properties of MnGa Films," Journal of Superconductivity and Novel Magnetism, Vol. 29, pp. 2035-2039, 2016.
[24]J. N. Feng, W. Liu, W. J. Gong, X. G. Zhao, D. Kim, C. J. Choi, et al., "Magnetic Properties and Coercivity of MnGa Films Deposited on Different Substrates," Journal of Materials Science & Technology, Vol. 33, pp. 291-294, 2017.
[25]M. Marrese, V. Guarino, and L. Ambrosio, "Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering," J Funct Biomater, Vol. 8, Feb 13 2017.
[26]引用來自於"Q. D. Company".
[27]引用來自於https://commons.wikimedia.org/w/index.php?curid=5624170.
[28]引用來自於http://highscope.ch.ntu.edu.tw/wordpress/?p=1599.
[29]A. C. Sun, F. T. Yuan, and J. H. Hsu, "Control of growth and ordering process in FePt(001) film at 300°C," Journal of Physics: Conference Series, Vol. 200, p. 102009, 2010.
[30]C. M. Kuo and P. C. Kuo, "Magnetic properties and microstructure of FePt–Si3N4 nanocomposite thin films," Journal of Applied Physics, Vol. 87, pp. 419-426, 2000.
電子全文 電子全文(網際網路公開日期:20230828)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top