跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭婷丰
研究生(外文):Ting-Fong Siao
論文名稱:化學溶液法合成 p 型 CuFeO2 粉末及其光催化特性
論文名稱(外文):A new chemical solution synthesis and photocatalytic performance of p-type CuFeO2 powders
指導教授:張裕煦
口試委員:郭俊宏林律吟邱德威
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:CuFeO2光催化化學溶液法
外文關鍵詞:photocatalysisdelafossiteCuFeO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究以化學溶液法於 90ºC 常壓下反應 12 小時,成功合成 3R-CuFeO2 粉末。方法一以 CuCl 及 FeSO4·7H2O 為反應物,添加四甲基氫氧化銨當螯合劑及氫氧化鈉做沉澱劑合成 CuFeO2 粉末。方法二以 Cu(CH3COO)2 及 FeSO4·7H2O 為反應物,僅添加氫氧化鈉也可成功合成 CuFeO2 粉末。XRD 分析得知,除了 CuFeO2 繞射訊號外,方法一仍有氧化銅和氧化鐵訊號,而方法二仍有些許氧化鐵訊號。UV-vis 量測分析得知兩 CuFeO2 粉末吸收範圍涵蓋紫外光及可見光。XPS 光譜顯示兩 CuFeO2 粉末銅價數為 +1,鐵價數為 +3,但方法一仍有部分二價銅存在。光催化降解反應以 10 ppm 亞甲基藍作為目標降解物,加入 CuFeO2 粉末進行 UV 光及可見光催化降解反應,結果顯示於 45 分鐘內,兩方法合成之粉末皆即可降解約 95% 的亞甲基藍。
為合成出更純相 CuFeO2 粉末,調整合成參數,尋求較佳合成條件。結果顯示當銅 : 鐵比例為 1:1.3~1:1.5 時,經 XRD 量測顯示呈 3R 及 2H-CuFeO2 純相。XPS 光譜顯示 CuFeO2 粉末金屬離子化學環境為 Cu+ 及 Fe3+。UV-vis 光譜計算 CuFeO2 粉末之 Eg= 1.35 eV,與理論值 1.32 eV 相符。光催化降解 10 ppm 亞甲基藍反應中,在 45 分鐘降解率也都可達 95%。CuFeO2 粉末經量測屬於弱磁性中的順磁性物質。實驗也針對 CuFeO2 進行補氧試驗及探討,結果發現並無預期效果好,並產生氧化鐵相。
The objective of this study is to discover a new chemical solution method for the synthesis of delafossite 3R-CuFeO2 powders in ambient environment. In the first method tetramethylammonium hydroxide and sodium hydroxide are used to control the precipitation rate of Cu(I) and Fe(II) ions in the formation of the binary metal oxide. In the second method sodium hydroxide is added alone to control the precipitation rate of Cu(II) and Fe(II) ions. The XRD analyses show that the products are mainly composed of delafossite CuFeO2 with trace of tenorite (CuO) and maghemite (Fe2O3). XPS spectra confirm that some bivalent state of copper are found using the first method for the synthesis of CuFeO2. For the study of photocatalytic performance, 10 ppm methylene blue is used as the target pollutant in the degradation reaction. UV-vis spectra show that, 95% of methylene blue is decomposed in 45 minutes using both of the samples as the catalysts.
In order to optimize the synthesis procedure of CuFeO2 preparation, the concentrations of Cu(II) and Fe(II) ions, reaction temperature and reaction time are precisely regulated. The XRD analyses show that the products are mainly composed of 3R and 2H CuFeO2. The valence states of Cu and Fe are confirmed to be +1 and +3 measured by XPS.The compounds exhibit optical band gap around 1.35 eV estimated from UV-vis absorption spectra. The magnetism of the compound is weak paramagnetic. For the photocatalytic performance, 10 ppm methylene blue is used as the target pollutants in the degradation reaction. UV-vis spectra show that 95% of methylene blue is decomposed in 45 minutes using the samples as the catalysts.
摘 要 i
ABSTRACT iii
致 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 光觸媒 3
2.1.1 光觸媒起源 3
2.1.2 光觸媒原理 3
2.1.3 光觸媒淨化原理 4
2.1.4 光觸媒分解水原理 5
2.1.5 理想光觸媒的需求 7
2.2 半導體 7
2.2.1 半導體特性 7
2.2.2 半導體光觸媒 8
2.2.3 光電流的產生 10
2.2.4 能帶彎曲理論 10
2.3 赤銅鐵礦化合物 11
2.3.1 赤銅鐵礦之晶格結構 11
2.3.2 赤銅鐵礦之光電化學性質 12
2.4 赤銅鐵礦化合物製程之文獻回顧 13
2.4.1 固態合成法 13
2.4.2 溶膠-凝膠法 14
2.4.3 甘胺酸燃燒法 15
2.4.4 水熱合成法 16
2.5 沉澱法 17
2.5.1 共沉澱法 17
2.5.2 均勻沉澱法 18
2.6 電位- pH圖 19
2.7 氧插層 CuFeO2 20
第三章 實驗部分 22
3.1 實驗藥品及其來源 22
3.2 實驗儀器 22
3.3 實驗流程 25
第四章 結果與討論 31
4.1 兩種化學溶液法製備 CuFeO2 特性分析比較 31
4.1.1 產物相之 XRD 比較 33
4.1.2 產物之 XPS 光譜分析 35
4.1.3 產物之紫外/可見光光譜分析及光催化實驗 36
4.2 以 CuFeO2(B) 實驗流程找出合成較佳參數 40
4.2.1 醋酸銅及硫酸亞鐵空白實驗 40
4.2.2 反應溫度對產物相之影響 41
4.2.3 反應物不同比例對產物相之影響 42
4.2.4 反應時間對產物相之影響 44
4.2.5 以 XRD 分析 CuFeO2 結構 47
4.2.60CuFeO2 粉末之 XPS 光譜 49
4.2.7 合成各 CuFeO2 吸收值及能隙能量之比較 51
4.2.8 亞甲基藍光降解效能比較 56
4.3 CuFeO2 粉末磁性分析 62
4.4 CuFeO2 結構之補氧試驗探討 64
4.5 CuFeO2 補氧前後結構之 BET 比較 72
第五章 結論 74
參考文獻 76
1.S. Omeiri, Y. Gabes, A. Bouguelia and M. Trari, “Photoelectrochemical characterization of the delafossite CuFeO2: application to removal of divalent metals ions”, J. Electroanal. Chem., vol. 614, no. 1, 2008, pp. 31-40.
2.X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu and N. Wang, “Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism”, Chem. Eng. J., vol. 236, 2014, pp. 251-262.
3.T. W. Chiu, K. Tonooka and N. Kikuchi, “Fabrication of ZnO and CuCrO2: Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes”, Thin Solid Films, vol. 516, no. 18, 2008, pp. 5941-5947.
4.D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wang and Y. B. Cheng, “Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells”, J. Mater. Chem., vol. 22, no. 47, 2012, pp. 24760-24768.
5.H. Y. Chen, K. P. Chang and C. C. Yang, “Characterization of transparent conductive delafossite-CuCr1−xO2 films”, Appl. Surf. Sci., vol. 273, 2013, pp.324-329.
6.S. P. Pavunny, A. Kumar and R. S. Katiyar, “Raman spectroscopy and field emission characterization of delafossite CuFeO2”, J. App. Phys., vol. 107, no.1, 2010, pp. 013522.
7.T. R. Zhao, M. Hasegawa and H. Takei, “Crystal growth and characterization of cuprous ferrite (CuFeO2)”, J. Cryst. Growth., vol. 166, no. 1-4, 1996, pp. 408-413.
8.H. Y. Chen and J. H. Wu, “Transparent conductive CuFeO2 thin films prepared by sol-gel processing”, Appl. Surf. Sci., vol. 258, no. 11, 2012, pp. 4844-4847.
9.D. Xiong, Y. Qi, X. Li, X. Liu, H. Tao, W. Chen and X. Zhao, “Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C”, RSC Adv., vol. 5, no. 61, 2015, pp. 49280-49286.
10.Y. Ma, X. Zhou, Q. Ma, A. Litke, P. Liu, Y. Zhang, C. Li and E. J. Hensen, “Photoelectrochemical properties of CuCrO2: characterization of light absorption and photocatalytic H2 production performance”, Catal. Lett., vol. 144, no. 9, 2014, pp. 1487-1493.
11.J. Wang, Y. J. Lee and J. W. Hsu, “Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics”, J. Mater. Chem. C, vol. 4, no. 16, 2016, pp. 3607-3613.
12.T. N. M. Ngo, T. T. M. Palstraand and G. R. Blake, “Crystallite size dependence of thermoelectric performance of CuCrO2”, RSC Adv., vol. 6, no. 94, 2016, pp. 91171-91178.
13.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, vol. 238, no. 5358, 1972, pp. 37-38.
14.A. Kudo, H. Kato and I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chem. Lett., vol. 33, no. 12, 2004, pp. 1534-1539.
15.S. Licht, “STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming”, J. Phys. Chem. C, vol. 113, no. 36, 2009, pp. 16283-16292.
16.A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., vol. 38, no. 1, 2009, pp. 253-278.
17.J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, “Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis”, Sol. Energ. Mat. Sol. C., vol. 79, no. 2, 2003, pp. 133-151.
18.J. Zhu and M. Zäch, “Nanostructured materials for photocatalytic hydrogen production”, Curr. Opin. Colloid. In., vol. 14, no. 4, 2009, pp.260-269.
19.劉如熹,張文昇,光照水分解產氫技術,科學月刊,2010。
20.C. Kittel, “Introduction to solid state physics”, Wiley, 2005.
21.劉怡君,摻雜碳之α-Fe2O3薄膜合成及水分解應用,碩士論文,國立台北科技大學資源工程所,台北,2010。
22.M. Grätzel, “Photoelectrochemical cells”, Nature, vol. 414, no. 6861, 2001, pp.338-344.
23.A. L. Linsebigler, L. Guangquan and J.T. Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results”,Chem. Rev., vol 95, 1995, pp.735-758.
24.K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor-solution interfaces”, J. Appl. Electrochem., vol. 37, no. 7, 2007, pp. 765-787.
25.A. F. Rogers, “Delafossite, a cuprous metaferrite from Bisbee, Arizona”, Am. J. Sci., vol. 207, 1913, pp. 290-294.
26.M. A. Marquardt, N. A. Ashmore and P. C. David, “Crystal chemistry and electrical properties of the delafossite structure”, Thin Solid Films, vol. 496, no. 1, 2006, pp. 146-156.
27.M. Younsi, A. Aider, A. Bouguelia and M. Trari, “Visible light-induced hydrogen over CuFeO2 via S2O32− oxidation”, Solar Energy, vol. 78, no. 5, 2005, pp. 574-580.
28.M. S. Prévot, N. Guijarro and K. Sivula, “Enhancing the performance of a robust sol–gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction”, ChemSus Chem, vol. 8, no. 8, 2015, pp. 1359–1367.
29.R. F. Wu, W. Pan, S. Liu, and J. Li, “Synthesis of CuFeO2 powder by sol-gel method”, Key. Eng. Mater., vol. 368, 2008, pp. 663-665.
30.T. W. Chiu and P. S. Huang, “Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process”, Ceram. Int., vol. 39, 2013, pp. 575-578.
31.M. M. Moharam, M. M. Rashad, E. M. Elsayed and R. M. Abou-Shahba, “A facile novel synthesis of delafossite CuFeO2 powders”, J. Mater. Sci. Mater. El., vol. 25, no. 4, 2014, pp. 1798-1803.
32.X. Qiu, M. Liu, K. Sunada, M. Miyauchi and K. Hashimoto, “A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property”, Chem. Commun., vol. 48, no. 59, 2012, pp. 7365-7367.
33.Y. Jin and G. Chumanov, “Solution synthesis of pure 2H CuFeO2 at low temperatures”, RSC Adv., vol. 6, no. 31, 2016, pp. 26392-264397.
34.F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications”, Biomaterials, vol.26, no. 7, 2005, pp.729-738.
35.W. H. Yang, C. F. Lee, H. Y. Tang, D. B. Shieh and C. S, Yeh, “Iron oxide nanopropellers prepared by a low-temperature solution approach”, J. Phys. Chem. B, vol. 110, no. 29, 2006, pp. 14087-14091.
36.W. C. Sheets, E. Mugnier, A. Barnabe, T. J. Marks, and K. R. Poeppelmeier, “Hydrothermal Synthesis of Delafossite-Type Oxides”, Chem. Mater., vol. 18, no. 1, 2006, pp 7-20.
37.N. Takeno, “Atlas of Eh-pH diagrams”, Geological survey of Japan open file report, vol. 419, 2005, pp. 102.
38.Y. J. Jang, Y. B. Park, H. E. Kim, Y. H. Choi and J. S. Lee, “Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production”, Chem. Mater., vol. 28, 2026, pp 6054-6061
39.T. R. Zhao, M. Hasegawa and H. Takei, “Oxygen nonstoichiometry in copper iron oxide [CuMO2+δ] single crystals”, J. Cryst. Growth, vol. 181, 1997, pp. 55-60.
40.M. Hasegawa, M. I. Batrashevich, T. R. Zhao, H. Takei, and T. Gotom “Effect of oxygen nonstoichiometry on the stability of antiferromagnetic phases of CuMO2+δ single crystals”, Phys. Rev. B, vol. 63, 2001, pp. 184437.
41.E. Mugnier, A. Barnabé and P. Tailhades, “Synthesis and characterization of CuFeO2+δ delafossite powders”, Solid State Ionics, vol. 177, no. 5, 2006, pp. 607-612.
42.R. Chalermpol and R. Chesta, “Effect of excess oxygen for CuFeO2.06 delafossite on thermoelectric and optical properties”, Physica B, vol. 526, 2017, pp. 21-27.
43.白世芸,以化學共沉澱法合成赤銅鐵礦 CuFeO2 粉末,碩士論文,國立台北科技大學資源工程所,台北,2017。
44.M. John, S. Heuss-Aßbichler and A. Ullrich, “Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤ 90oC in aqueous solution”, J. Solid State Chem., vol. 234, 2016, pp. 55-62.
45.D. R. Lide, “CRC Handbook of Chemistry and Physics, 88th Edition”, CRC Press, 2007.
46.I. Nakai, Y. Sugitani, K. Nagashima and Y. Niwa, “X-ray photoelectron spectroscopic study of copper minerals”, J. Inorg. Nucl. Chem., vol. 40, no. 5, 1978, pp. 789-791.
47.B. R. Strohmeier, D. E. Levden, R. S. Field and D. M. Hercules, “Surface spectroscopic characterization of CuAl2O3 catalysts”, J. Catal.,vol. 94, no. 2, 1985, pp. 514-530.
48.鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用,博士論文,國立成功大學化學研究所,台南,2005。
49.K. Unseock,C. K. Sung,J. H. Dong,M. J. Sang,C. Wonyong,S. H. Dong,A.-W. Ahmed and P. Hyunwoong, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis”, Energy Environ. Sci., vol.8, 2015, pp. 2638-2643.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊