跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博淵
研究生(外文):Po-Yuan Chang
論文名稱:智慧型多模式無線防救災通訊系統之研製
論文名稱(外文):Development of Smart Multimode Wireless Communication System for Natural Hazardous Environment
指導教授:張正春張正春引用關係
指導教授(外文):Cheng-Chun Chang
口試委員:李豐佐賴進松林詠彬
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:46
中文關鍵詞:長距離無線多模式智慧型防救災通訊系統
外文關鍵詞:SmartMultimodeWirelessLong DistanceCommunication System for Natural Hazardous Environment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來因極端氣候導致自然災害頻繁,根據聯合國減災策略組織(United Nations Office for Disaster Risk Reduction, UNISDR)資料顯示,自 1995 年到2015 年為止,自然災害造成的累積損失已高達 2.5 兆美元,可見推動災害防治與監測之重要性。其中,可靠且可長距離傳輸的無線通訊系統是防救災的關鍵,不管是在警報或防災系統建置中,都須確保資訊可以穩健傳輸以跨越受自然災害侵襲的地區向外通訊。
然而不同無線通訊技術各有其優缺點,若使用單一通訊技術於防救災應用,將有可能因特定天候情況而失去通訊能力。有鑑於此,本文使用多種先進無線通訊模組,結合演算法推算選擇通訊模組,研製於颱風或豪雨等惡劣天候條件下,仍可穩健通訊的智慧型多模式無線防救災通訊系統。硬體部分,本文選用高傳輸率的 Wi-Fi 模組、干擾抵抗力強的直序展頻(Direct-Sequence Spread Spectrum, DSSS)模組、以及靈敏度極高的 LoRa 模組並加以強化型,使之可耐天候及進行長距離傳輸;並連結 Raspberry Pi 3(RPi3)做為控制及演算核心平台。於永春寮至關渡平原間(距離約2.51~4.08 公里)的實測結果顯示,強化型 Wi-Fi 模組使用功率 27 dBm、天線增益 24dBi 下,仍然有-68~-74 dBm 的 RSSI;強化型展頻模組使用功率 27dBm、天線增益 24dBi下,仍然有-69~-76dBm 的 RSSI。於大佳河濱公園河畔(距離約 1.14 公里)的實測結果顯示,強化型 LoRa 使用頻率 868MHz、頻寬 125KHz、SF=12、模組功率 27dBm、天線增益 24dBi 下,仍有 3~5dB 的 SNR,代表選用的模組皆可進行至少 1 公里的長距離傳輸。
軟體部分開發一通訊模式候選排序演算法,並配合各模組的接收訊號強度(Received Signal Strength Indicator, RSSI)、中心頻率及靈敏度等資訊,挑選出該天候條件下,可提供穩健傳輸且能量消耗最低的模組。此外,我們也將RPi3 架設為檔案伺服器,可以處理檔案傳輸的服務;並使用 File Transmission Protocal (FTP)做為接收端與雲端儲存裝置的連接方式;傳送端及接收端各架設一監控網頁,可監看 RPi3 於各個通訊模組上的數距吞吐情形及 RPi3 的 CPU
溫度等資訊
此系統已於彰化縣自強大橋進行整合測試。傳送即接收端分別架設於 P8及 P1 橋墩,兩地間相距 476 公尺,成功展示本系統之功能性、完整性與可用性。
In recent years, extreme weather have caused frequent natural disasters. According to the report from UNISDR (United Nations Office for Disaster Risk Reduction), from 1995 to 2015, the cumulative damage caused by natural disasters has reached as high as 2.5 trillion US dollars, it can be seen that the importance of promoting disaster prevention and monitoring. Among them, reliable and long-distance transmission of wireless communication systems is the key to disaster prevention. Whether in the construction of alarms or disaster prevention systems, it is necessary to ensure that information can be transmitted steadily to communicate with areas affected by natural disasters.
However, different wireless communication technologies have their own advantages and disadvantages. If a single communication technology is used for disaster prevention applications, it may lose communication capability due to specific weather conditions. In view of this, this thesis uses a variety of advanced wireless communication modules, combined with algorithms to calculate the communication module, and develops a smart multi-mode wireless disaster prevention communication system that can still communicate robustly under bad weather conditions such as hurricanes and heavy rain.
In the hardware aspect, this thesis uses the Wi-Fi module with high transmission rate, the Direct-Sequence Spread Spectrum (DSSS) module with strong interference resistance, and the LoRa module with high sensitivity. And we strengthen them, making them weatherproof and be able to do long-distance transmission. And we connect them with Raspberry Pi 3 (RPi3) as the core platform for control and calculation. The measured results from Yongchun Hut to Guandu Plain (with distance about 2.95 km) show that the Wi-Fi module uses 27 dBm of power and 23 dBi of antenna gain, and still has RSSI (Received Signal Strength Indicator) of -69~-64 dBm; the DSSS module uses a power of 27dBm and an antenna gain of 24dBi, and still has an RSSI of -64~-61 dBm; the LoRa frequency is 868MHz, the bandwidth is 125KHz, the SF (Spreading Factor) is 12, the module power is 15 dBm, and the antenna gain is 5 dBi. There is still SNR with 0.1~1.0 dB. This means that the modules we select can be used for long-distance transmission at the disaster site.
In the software aspect, we implement the Communication Mode Candidate Ranking Algorithm on RPi3. With each modules RSSI, center frequency and sensitivity of each modules, the algorithm will calculate the weather conditions, and decide whether module to use to provide robust transmission and efficient energy consumption. In addition, we also set the RPi3 as a file server to handle the file transfer service; and use File Transmission Protocal (FTP) as the connection method between the receiving end and the cloud storage device; the transmitting terminal and the receiving end set up a monitoring webpage, which can monitor the data throughput of RPi3 on each communication module and the CPU temperature of RPi3.
This system has been integrated and tested at the Bridge Ziqiang in Changhua County. The transmitting and receiving ends are respectively installed on the P8 and P1 piers, and the distance between the two places is 476 meters. The test results show that the RSSI of Wi-Fi is about -49 dBm and the RSSI of the DSSS module is about -53 dBm. On behalf of the system, it is indeed possible to carry out long-distance transmission of disaster sites.
目錄
摘要 i
Abstract iii
誌謝 vi
目錄 vii
表目錄 1
圖目錄 2
第一章 緒論 5
1.1 前言 5
1.2 研究動機 5
第二章 背景知識 7
2.1 國內外防災通訊系統發展 7
2.2 降雨對訊號強度的影響 9
第三章 研究方法 11
3.1 硬體規劃設計 11
3.1.1 強化型Wi-Fi無線通訊模組 11
3.1.2 強化型直序展頻無線通訊模組 12
3.1.3 強化型LoRa無線通訊模組 13
3.2 模組測試 13
3.2.1 模組個別室內驗證 13
3.2.2 模組個別室外測試 16
3.2.3 模組整合測試 19
軟體規劃設計 錯誤! 尚未定義書籤。
3.3 22
3.3.1 以Samba進行檔案伺服器架設 22
3.3.2 模式切換機制 22
3.3.3 檔案上傳雲端之FTP腳本 23
3.3.4 系統運作情形監控網頁 24
第四章 通訊模式候選排序演算法 26
4.1 演算法流程 26
4.2 案例分析 29
4.2.1 case 1, type 1 32
4.2.2 case 1, type 2 33
4.2.3 case 1, type 3 35
4.2.4 case 2, type 1 36
4.2.5 case 2, type 2 38
4.2.6 case 2, type 3 40
4.2.7 案例比較 43
第五章 系統展示 44
第六章 結論 45
第七章 未來展望 46
第八章 資料來源 47
資料來源
[1].United Nations International Strategy for Disaster Reduction, “UN Secretary-General warns: Economic losses from disasters are out of control” , 2013, 15 May [Online] Available: https://www.unisdr.org/archive/33003
[2].United Nations International Strategy for Disaster Reduction, “The human cost of weather-related disasters 1995-2015,” 2015 [Online] Avaiable: https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf
[3].黃菁菁。強颱蘭恩縱貫狂掃日本 已造成2死89傷。中時電子報。民106年10月23日。 [Online] Available: http://www.chinatimes.com/realtimenews/ 20171023002013-260408
[4].蘇元風、傅鏸漩、林又青、王俞婷、張志新、吳宜昭、李宗 融、王安翔、龔楚媖、于宜強、徐永衡、陳永明、劉致灝、 葉家承、蘇文瑞、張子瑩。2016 年尼伯特颱風災害報告。國家災害防救科技中心。民 105 年 12 月。
[5].蘇元風、傅鏸漩、林又青、王俞婷、施虹如、張志新、吳宜昭、李宗融、王安翔、龔楚媖、于宜強。2016 年梅姬颱風災害報告。國家災害防救科技中心。民 105 年 12 月。
[6].行政院中央災害防救辦公室。2015-2030 仙台減災綱領中文版本(Sendai Framework for Disaster Risk Reduction 2015-2030)。民104年7月1日。 [Online] Available: https://www.cdprc.ey.gov.tw/News_Content.aspx?n= E37DC88642C4922D&s=E0012576EB819516
[7].內政部消防署。防救災緊急通信系統整合建置計畫。民92年7月21日。[Online] Available: https://slidesplayer.com/slide/11694246/
[8].NEC Taiwan Ltd。防救災軟體多模通訊系統。 [Online] Available: http://tw.nec.com/zh_TW/solutions/precaution/sdr.html
[9].Project Loon, “Project Loon,” [Online] Available: https://loon.co/
[10].Nick Statt, “FCC will allow Alphabet’s Project Loon to deliver air balloon LTE to Puerto Rico,” Oct. 7, 2017, [Online]. Avaliable: https://www.theverge.com/ 2017/10/7/16441834/alphabet-google-x-project-loon-puerto-rico-air-balloon-lte-connectivity
[11].行政院災害防救辦公室。推動高抗災通信平臺建設。民104年四月17日。 [Online] Available: https://www.ey.gov.tw/News_Content.aspx?n= 4E506D8D07B5A38D&sms=F798F4E213647822&s=52E6E168D2737239
[12].李容萍。不怕天災時斷訊! 桃園復興建置10防災通訊平台。自由時報。民106年8月8日。 [Online] Available: http://news.ltn.com.tw/news/life/breakingnews/2156857
[13].全國法規資料庫。行動通信網路業務基地臺設置使用管理辦法。民106年8月17日。[Online] Available: http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=K0060089
[14].KDDI Institute ,Inc,“無人航空機を活用したEメール配送システムを開発 ~災害時に孤立地域から安否連絡することを想定した実証実験に成功~” Fre.25, 2016, [Online] Available: http://www.kddi-research.jp/newsrelease/2016/022502.html
[15].C. Luo, J. Nightingale, E. Asemota, C. Grecos, “A UAV-Cloud System for Disaster Sensing Applications”, Proc. IEEE 81st Vehic. Tech. Conf. (VTC Spring) 2015, pp. 1-5, 2015.
[16].International Telecommunications Union, “RECOMMENDATION ITU-R P.676-9 - Attenuation by atmospheric gases,” Feb. 2012. [Online] Available: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-9-201202-S!!PDF-E.pdf
[17].Joshuabardwell, “5 GHz and environmental moisture,” para 1 & 3, Dec. 15, 2014. [Online] Available: https://forum.flitetest.com/index.php?threads/5-ghz-and- environmental-moisture.14382/
[18].RF café, “Atmospheric Absorption,” [Online] Available: http://www.rfcafe.com/references/electrical/atm-absorption.htm
[19].M. Marcus and B. Pattan, “Millimeter Wave Propagation: Spectrum Management Implications,” IEEE Microwave Magazine, Vol. 6, No. 2, pp. 54-62, 2005.
[20].E band communication, “E-Band Technology,” [Online] Available: https://www.e-band.com/index.php?id=86
[21].Taiyun Chi, Osama Farooqi, Zach Fleetwood, David Giles, and Mingjie Zhou, “Background Technology”, Five Guys, Satellite Files, [Online] Available: http://propagation.ece.gatech.edu/ECE6390/project/Fall2012/Team02/6390%20Webpage%20Updated%202/6390%20Webpage/styled/index.html
[22].樹莓派。維基百科。[Online] Available: https://zh.wikipedia.org/zh-tw/%E6% A0%91%E8%8E%93%E6%B4%BE
[23].“Spread spectrum,” Wikipedia, [Online] Available: https://en.wikipedia.org/wiki/ Spread_spectrum
[24].瑞德感知股份有限公司。新一代無線傳輸技術-LoRa。民106年6月23日。 [Online] Available: http://blog.hexsave.com/%E6%96%B0%E4%B8%80%E4% BB%A3%E7%84%A1%E7%B7%9A%E5%82%B3%E8%BC%B8%E6%8A%80%E8%A1%93-loraManuka, “Introducing LoRa™ !” Apr. 14, 2015, [Online] Available: http://www.instructables.com/id/Introducing-LoRa-/
[25].邱倢芯。LoRa產業鏈實力堅強。聯合新聞網。民106年5月24日。[Online] Available: https://udn.com/news/story/6903/2480478Semtech, “AN1200.22 LoRa™ Modulation Basics,” May, 2015, [Online] Available: https://www.semtech.com/uploads/documents/an1200.22.pdf
[26].柯大。【Acsip LoRa實作1】快速開發LoRa通訊功能-SPI介面篇。民106年7月20日。[Online] Available: http://kodaiotlab.com/2017/07/%E3%80%90acsip-lora%E5%AF%A6%E4%BD%9C1%E3%80%91%E5%BF%AB%E9%80%9F%E9%96%8B%E7%99%BClora%E9%80%9A%E8%A8%8A%E5%8A%9F%E8%83%BD%EF%BC%8Dspi%E4%BB%8B%E9%9D%A2%E7%AF%87/
[27].A. Augustin, J. Yi, T. Clausen, W. M. Townsley, "A study of LoRa: Long range & low power networks for the Internet of Things", Sensors, vol. 16, no. 9, pp. 1466, 2016.
[28].Semtech, “Semtech SX1276,” [Online] Available: https://www.semtech.com/ products/wireless-rf/lora-transceivers/SX1276
[29].U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An overview,” IEEE Communications Surveys & Tutorials, 2017.
[30].Hunwei, NB-IoT -enabling new business opportunities. MWC 2016, 22-25 Feb. 2016. [Online] Available: https://www.huawei.com/en/press-events/events/mwc/ 2016/summit/global-nb-iot/nb-iot-enabling-new-business-opportunities
[31].國家通訊傳播委員會。新聞稿 - 關注物聯網發展趨勢,國家通訊傳播委員會就電信級與非電信級物聯網競合發展所涉頻率、號碼及器材審驗等基本環境持續整備,建構有利物聯網發展的基礎及網路管理層面規範,預計今年底前再完成相應之4G管理規則等法令修正,帶動產業與創新應用服務之發展。民106年7月28日。[Online] Available: https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=8&sn_f=37727
[32].維基百科,自由的百科全書。MRTG。民106年9月5日. [Online] Available: https://zh.wikipedia.org/wiki/MRTG
[33].H. T. Friis, "A note on a simple transmission formula", Proceedings of IRE, vol. 34, pp. 254-256, May 1946.
[34].Pasternack, “Free Space Path Loss, ” [Online] Available: https://www.pasternack.com/t-calculator-fspl.aspx
[35].Agilent Technologies, “Agilent Transition from 2G/3G to 3.9G/4G Base Station Receiver Conformance Test,” Apr. 16, 2012 [Online] Available: https://www.testworld.com/wp-content/uploads/transition-from-2g-3g-to-3.9g-4g-base-station-receiver-conformance-test.pdf
[36].“IEEE 802.11a -1999, Amendment 1 to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz band”, IEEE, 1999.
[37].“IEEE Standard 802.11n-2009, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 5: Enhancements for Higher Throughput”, IEEE, 2009.
[38].Celtrio Sarl, “WLAN basics - Receiver Sensitivity,” Sep. 24, 2007. [Online] Available: http://www.celtrio.com/support/documentation/coverazone/2.0.1/ basics.sensitivity.html
[39].National Instruments “Introduction to Bluetooth Device Testing,” Sep. 2016, [Online] Available: http://download.ni.com/evaluation/rf/intro_to_bluetooth_ test.pdf
[40].C. Bisdikian, "An overview of the Bluetooth wireless technology", IEEE Commun. Mag., vol. 39, no. 12, pp. 86-94, Dec. 2001.
[41].Chris Baumann, Design How-To A ZigBee Radio Tutorial for the non-RF Expert The link budget, EE times, 8 May 2006, [Online] Available: https://www.eetimes.com/document.asp?doc_id=1274006
[42].Petri Possi, WCDMA, 2003, [Online] Available: http://www.umtsworld.com/technology/wcdma.htm
[43].郝才勇、駱超、劉恆。全球衛星通訊技術最新發展趨勢。軍僑網。民106年7月30日,取自:https://tw.saowen.com/a/22752460ed1aef498ad9ed2b75d8 5c0a842ac942dc75343af7c44d7c3cc934ff
[44].KVH Industries。TracPhone® V3/V3ip衛星通信資費表。民105年9月7日。取自:Https://www.kvh.com/ViewAttachment.aspx?guidID=%7BA720C9AF -485E-4E8B-88F9-560FE838C8AD%7D
[45].Kim, H., Wireless Communications Systems Design, 1st ed., Wiley, 2015.
[46].D. P. Agrawal, Q.-A. Zeng, Introduction to Wireless and Mobile Systems 4th, Cengage Learning. 2015
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top