跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李恆霖
研究生(外文):Heng-Lin Lee
論文名稱:電火花放電法備製奈米氧化鋅與氧化鎢水合物其微結構及特性之研究
論文名稱(外文):Study on Microstructure and Properties of Nano Zinc Oxide and Tungsten Oxide Hydrate Prepared by Electric Spark Discharge Method
指導教授:曾國雄曾國雄引用關係
口試委員:俞齊山陳昭榮曹大鵬周至如曾國雄李清吟
口試日期:2018-07-31
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:164
中文關鍵詞:奈米顆粒奈米膠體放電加工機
外文關鍵詞:nano particlenano colloidElectric discharge machine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以99.97%的鋅(Zn)及鎢(W)金屬,利用電火花放電法以純水作為介電液備製奈米氧化鋅(ZnO)及奈米氧化鎢(WO3)膠體,此備製方式是屬綠色備製方法,在過去文獻中從未呈現。一般大多使用化學合成法備製,這也是本實驗室第一次以火花放電備製氧化鋅與氧化鎢;為了解所備製的奈米氧化鋅(ZnO)及奈米氧化鎢(WO3)膠體之特性及微結構,以雷射光散射儀(Zetasizer Nano System)、以紫外光/可見光分光光譜儀(UV-Visible Spectrophotometer,簡稱UV-Vis儀)、拉曼光譜分析儀(Raman Spectrometer)及螢光光譜分析儀(Photoluminescence, PL)、X光繞射分析儀(X-ray diffraction, XRD)、掃描式電子顯微鏡(Scanning Electron Microscope)、穿透式電子顯微鏡 (Through-type Scanning Electron Microscope) 、選區繞射(Selected area diffraction,SAED)等儀器分析其特性、成分及微結構。以火花放電法備製氧化鋅與氧化鎢為第一次實做,過去文獻極少呈現備製成品,測試結果與現有的其他化學合成方法生產的氧化鋅與氧化鎢之特性異同比較。
以火花放電法備製後的氧化鋅與氧化鎢膠體經各種儀器檢驗測,測得特性及微結構大略敘述如下:(一)以雷射光散射儀(Zetasizer Nano System)分析結果:氧化鋅(ZnO)顆粒大小分佈集中在1.117nm,而Zeta電位測量結果為-36.2mV,顯示其懸浮度良好;氧化鎢(WO3)膠體奈米粒子平均分佈在62.75nm,Zeta電位為-59.7mV,也顯示氧化鎢(WO3)膠體的懸浮性佳。(二)以紫外光/可見光分光光譜儀(UV-Visible Spectrophotometer,簡稱UV-Vis儀) 測得其光譜吸收強度分析:氧化鋅(ZnO)最大吸收強度在波長190nm以下,波長大於388nm時,其光吸收強度將近零;氧化鎢(WO3)測得兩個最大吸收峰值,其最大吸收強度會隨著膠體濃度升高產生紅移現象。(三)以XRD,SAED檢測氧化鎢(WO3)及氧化鋅(ZnO)所含成分及晶體結構,發現所備製的奈米氧化鋅(ZnO)膠體中含有鋅(Zn)及氧化鋅(ZnO)兩種元素,氧化鋅(ZnO)晶格間距(indice spacing)0.281nm對應晶面(Miller index)為(100),晶格間距0.259nm對應為晶面為(002),晶格間距0.247nm對應晶面為(101)是氧化鋅(ZnO)X光繞射的最大峰值;鋅(Zn)晶格間距0.230nm對應晶面為(100),鋅(Zn)晶格間距0.209nm對應晶面為(101)是鋅(Zn)X光繞射的最大峰值;所備製的氧化鎢(WO3)膠體中含有鎢(W)及氧化鎢水合物(WO3•H2O)兩種元素,鎢(W)晶格間距0.223nm對應晶面為(110),是鎢(W)X光繞射的最大峰值;氧化鎢水合物(WO3•H2O)晶格間距0.375nm對應為晶面為(120),晶格間距0.347nm對應為晶面為(111)是氧化鎢水合物(WO3•H2O)X光繞射的最大峰值。
應用電火花放電法在備製氧化鋅膠體及氧化鎢膠體經成份分析結果為:氧化鋅(ZnO)膠體中含有鋅(Zn)及氧化鋅(ZnO)兩種成分;氧化鎢(WO3)膠體中含有鎢(W)及氧化鎢水合物(WO3.H2O)兩種成份。氧化鋅(ZnO)的拉曼(Raman)光譜產生E1(LO)及E2(H)兩個拉曼特徵峰在412 cm-1與570 cm-1位置上;以光致螢光光譜分析,氧化鋅奈米在波長366 nm及498nm兩處會發光可知本實驗備製之氧化鋅結構品質良好結晶度很高,無晶面方向不佳及的情形。WO3•H2O 經拉曼光譜分析,在247.5 cm-1、313.1 cm-1、706.8 cm-1及807.5 cm-1等四位置出現明顯的拉曼光譜特徵峰值;光致螢光(PL)分析,在PL光譜圖中發生以下五個特徵峰值,分別為446nm、470nm、489nm、520nm、570nm ,顯示本實驗備製之氧化鎢水合物結構品質良好。
In this study, with 99.97% of zinc (Zn), tungsten (W) metals and pure water as the dielectric liquid, spark discharge method is adopted to prepare nano zinc oxide (ZnO) and nano tungsten oxide (WO3) colloids. This is a green preparation method and has never been presented in the past literature. Generally, zinc oxide and tungsten oxide are mostly prepared by chemical synthesis. This is the first time that the laboratory made zinc oxide and tungsten oxide by spark discharge. In order to understand the characteristics and microstructure of the prepared nano zinc oxide (ZnO) and nano tungsten oxide (WO3) colloids, the analysis applied instruments such as Zetasizer Nano System, UV-Visible Spectrophotometer (abbreviated as UV-Vis Spectrophotometer), Raman spectroscopy, Photoluminescence (abbreviated as PL), X-ray diffraction (abbreviated as XRD), Selected area diffraction (abbreviated as SAED), Scanning Electron Microscope, Through-type Scanning Electron Microscope and so on. The initial experiment of preparing zinc oxide and tungsten oxide by spark discharge method is rarely presented in the past literature, and so are the compared similarities and differences between the characteristics of zinc oxide and tungsten oxide in this method and that in other synthetic methods.
The zinc oxide and tungsten oxide colloid prepared by the spark discharge method were tested by various instruments, and the measured characteristics and microstructure are roughly described as follows: (1) Analysis results from the Zetasizer Nano System: The particle size distribution of zinc oxide (ZnO) is concentrated at 1.117 nm, and the zeta potential measurement is -36.2 mV, indicating good levitation. Tungsten oxide (WO3) colloidal nanoparticles have an average distribution of 62.75 nm and a zeta potential of -59.7 mV, which also shows good suspension of tungsten oxide (WO3) colloid. (2) Analysis of spectral absorbance intensity measured by UV-Visible Spectrophotometer (UV-Vis instrument):The maximum absorbance intensity of zinc oxide (ZnO) is near zero when the wavelength is below 190 nm and greater than 388 nm. There are two maximum absorbance peaks measured in Tungsten oxide (WO3) and its maximum absorbance intensity red-shifst as the colloid concentration increases. (3) XRD and SAED were used to detect the composition and crystal structure of tungsten oxide (WO3) and zinc oxide (ZnO). And it is found that the prepared zinc oxide (ZnO) colloid contains the two elements, including zinc (Zn) and zinc oxide (ZnO). The Miller index of Zinc oxide (ZnO) with a indice spacing of 0.281nm is (100), while the Miller index of Zinc oxide (ZnO) with a indice spacing of 0.259nm is (002). The Miller index of Zinc oxide (ZnO) with a indice spacing of 0.247nm is (101), which is the maximum peak of zinc oxide (ZnO) X-ray diffraction. The Miller index of zinc (Zn) with a indice spacing of 0.230 nm is (100) and the Miller index of zinc (Zn) with a indice spacing of 0.209 nm is (101), which is the maximum peak of zinc (Zn) X light diffraction. The prepared tungsten oxide (WO3) colloid contains two elements, including tungsten (W) and tungsten oxide hydrate (WO3•H2O). The Miller index of tungsten (W) with a indice spacing of 0.223 nm is (110), which is the maximum peak of tungsten (W) X-ray diffraction. The tungsten oxide hydrate (WO3•H2O) has a 0.375 nm indice spacing when the Miller index is (120) and a 0.347 nm indice spacing when the Miller index is (111), which is the maximum peak of tungsten oxide hydrate (WO3•H2O) X-ray diffraction.
The results of the composition analysis of the zinc oxide colloid and tungsten oxide colloid prepared with electric spark discharge method are as the followings: Zinc oxide (ZnO) colloid contains zinc (Zn) and zinc oxide (ZnO). Tungsten oxide WO3) colloid contains tungsten (W) and tungsten oxide hydrate (WO3•H2O). In the Raman spectroscopy of zinc oxide (ZnO), E1(LO) characteristic peak and E2(H) characteristic peak are produced on the positions of 412 cm-1 and 570cm-1 respectively. In the analysis of Photoluminescence (PL), the nano zinc oxide (ZnO) illuminates as the wavelength reaches 366nm and 498m. This indicates that both the structural quality and crystallinity of the zinc oxide (ZnO) prepared in this experiment are high and there is no condition of unfavorable Miller index. In the analysis of the Raman spectroscopy of tungsten (W) and tungsten oxide hydrate (WO3•H2O), obvious characteristic peaks can be found on four positons including 247.5 cm-1、313.1 cm-1、706.8 cm-1 and 807.5 cm-1. In the study of Photoluminescence (PL), there are five obvious characteristic peaks found on the PL spectroscopy, which are 446nm, 470nm, 489nm, 520nm and 570nm respectively. This shows that the structural quality of tungsten oxide hydrate is high.
摘要 i
Abstract iii
誌謝 vi
Contents vii
List of Table x
List of Figure xi
Chapter 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research motivation and purpose 3
1.3 Research methods and procedures 7
1.4 Architecture of dissertation 11
Chapter 2 LITERATURE REVIEW 13
2.1 Introduction of Electrical Discharge Machining 13
2.1.1 Principle of electric discharge machine 15
2.1.2 Introduction to the system structure of the electric discharge machine 22
2.2 Introduction of nano zinc oxide (ZnO) 26
2.2.1 Metal Zinc(Zn) 26
2.2.2 Introduction of nano ZnO. 27
2.2.3 Common method for producing nano ZnO. 31
2.3 Introduction of nano tungsten oxide (WO3) 33
2.3.1 Metal Tungsten(W) 33
2.3.2 Nano tungsten oxide (WO3) 34
2.3.3 Common preparation of nano tungsten oxide (WO3) 35
2.4 Introduction of nano metal colloidal properties 38
2.4.1 Suspension stability of nano metal colloid 38
2.4.2 Optical properties 39
2.4.3 Brownian motion 40
2.4.4 Quantum Size Effect 43
2.4.5 DLVO Theory 45
2.4.6 Tyndall effect 50
2.4.7 Sedimentation 51
2.4.8 Zeta potential 51
2.4.9 Surface effect 55
Chapter 3 RESEARCH METHODS AND EQUIPMENT DESCRIPTION 57
3.1 Research methods and research processes 57
3.1.1 Research Methods 57
3.1.2 Research Procedure 59
3.2 Zinc oxide and tungsten oxide colloid prepared by Electrical Discharge Machine 60
3.2.1 Process and Parameter Control of Zinc Oxide Prepared by Electrical Discharge Machine 60
3.2.2 Preparation of Tungsten Oxide Process and Number Control by EDM 66
3.3 Introduction to Nano Colloid Analyzer 68
3.3.1 UV-Visible Spectrophotometer 69
3.3.2 Zetasizer Nano System 70
3.3.3 Scanning Electron Microscope 71
3.3.4 Through-type Scanning Electron Microscope 72
3.3.5 Energy Dispersive Spectrometer(EDS) 74
3.3.6 X-ray diffraction analyzer (XRD) 75
3.3.7 Photoluminescence spectrum analyzer 77
Chapter 4 EXPERIMENTAL RESULTS AND DISCUSSION. 79
4.1 Analysis of the characteristics of nano zinc oxide 79
4.1.1 Analysis of Particle Size and Suspension of Nano ZnO. 79
4.1.2 Analysis of the Characteristics of ZnO on Light. 81
4.1.3 Analysis of Colloidal Composition of ZnO 88
4.1.4 ZnO colloidal X-ray diffraction analysis (XRD) 90
4.1.5 Crystal Structure Analysis of Transparent Electron Microscopy (TEM) Zinc Oxide (ZnO) 93
4.1.6 Raman spectroscopy analysis 98
4.1.7 Photoluminescence Spectroscopy (PL) analysis 100
4.2 Characteristic Analysis of WO3•H2O Nano Colloid 104
4.2.1 Analysis of Nanoparticle Size and Suspension of WO3•H2O Nano Colloid 104
4.2.2 Optical Properties Analysis of WO3•H2O 106
4.2.3 Analysis of Colloidal Composition of WO3•H2O. 114
4.2.4 X-ray diffraction analysis of prepared WO3•H2O colloid 115
4.2.5 Analysis of crystal structure of WO3•H2O by TEM. 117
4.2.6 Raman spectroscopy analysis of WO3•H2O 126
4.2.7 WO3•H2O with Photoluminescence (PL) Spectral Analysis 128
4.3 Results and discussion 131
4.2.1 Analysis results of nano zinc oxide characteristics 131
4.3.2 Analysis results of WO3•H2O 136
Chapter 5 CONCLUSIONS AND FUTURE PROSPECTS 143
5.1 Conclusion 143
5.2 Contribution of the paper 146
5.3 Directions of future research 147
REFERENCES 149
Publication List 163
[1] Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse ,Zhong-xing Wu et al. trans.,Nanoscience and technology,Gau Lih Book Co,2004
[2] Ishikawa Masamichi edit.,Ziwei Ou trans.,Introduction to Nanotechnology and Industry,Gau Lih Book Co ,2004
[3] Science Development:vol. 354, June 2002,pp.48~51
[4] Chinese Society of Particuology,The National Center for Nanoscience and Technology(NCNST) of China,”Nano Powder Preparation and Technology Application Research Association,” 2002
[5] Ji Naiqi,”A Study on the Synthesis, Microstructures and Luminescent Properties of ZnO Nanoparticles,” Masters thesis, National Chiao Tung University,2002.
[6] Alessio Becheri,Maximilian Dürr,Pierandrea Lo Nostro,Piero Baglioni, “Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers,” Journal of Nanoparticle Research, Volume 10, Issue 4, April 2008, pp 679–689
[7] S. F. Yu, B. Y. Lee and W. S. Lin, "Waveform Monitoring of Electric Discharge Machining by Wavelet Transform." The International Journal of Advanced Manufacturing Technology, Volume 17,Issue 5, February 2001,pp 339-343
[8] Yu-Chun Chen, “The Research on the Properties of Colloidal Silver Prepared by Electrochemical Discharge Method,” Masters Thesis,National Taipei University of Technology Department of Electrical Engineering,2008
[9] P. Pec¸as, E. Henriques, ”Electrical discharge machining using simple and powder-mixed dielectric: The effect of the electrode area in the surface roughness and topography,” Journal of Materials Processing Technology, vol.200, iss.1-3, 2008, pp.250-258
[10] Chen,Hsiow-Lian, “A Study of Luminescence Properties of Uniform Zinc Oxide Powders Prepared by Chemical Methods ,” Department of Materials Science and Engineering, National Taiwan University of Science and Technology,2003
[11] T. Sekiguchi, N. Ohashi, and Y. Terada, “Effect of hydrogenation on ZnO luminescence,” Japanese Journal of Applied Physics part 2 letters, vol. 36, 1997, pp. L289-L291
[12] Pacholski, C. Kornowski, A. Weller, H. Angew, Chem. Int. Ed, 2002,41, 1188.
[13] Redel, E.; Mirtchev, P. Huai, C. Petrov, C. Ozin, G. A. ACS Nano 2011,5, 2861.
[14] Olson, T. Y. Chernov, A. A. Drabek, B. A. Satcher Jr., J. H. Han, T. Y. Chem. Mater. 2013,25, 1363
[15] Cheng, C.; Liu, B. Yang, H. Zhou, W. Sun, L. Chen, R. Fan, H. J. ACS Nano,2009,3, 3069
[16] Liu, B. Aydil, E. S. J. Am. Chem. Soc, 2009, 131, 3985,
[17] Ping-Yi Ho, Subramani Thiyagu, Shao-Hsuan Kao, Chia-Yu Kao and Ching-Fuh Lin “ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells” C. F. J. Mater. Chem. A, 2013, 1, 14641–14648
[18] Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T,” Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template,”Chem Mater ,14, 2002,pp 1445–1447
[19] Ho, P. Y. Thiyagu, S. Kao, S. H.; Kao, C. Y. Lin, C. F. Nanoscale, .,2014, 6, 466
[20] Y. Shen, T. Yamanzaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, “Influence of effective surface area on gas sensing properties of WO3 sputtered thin films ,” Thin Solid Films ,2009,517, 2069-2072
[21] K. J.Patel, C. J. Panchal, M.S. Desai, P. K. Mehta, “An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures” , Materials Chemistry and Physics Volume 124, Issue 1, 1 November 2010, pp 884-890.
[22] W. Cheng, E. Baudrin, B. Dunn, J. I. Zink, “Synthesis and electrochromic properties of mesoporous tungsten oxide,” Journal of Materials chemistry 11, 2001,pp 92-97.
[23] C. Santato, M. Odziemlowski, M. Ulmann, J. Augustynski, “Crystal lographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications” , Journal of the American Chemical Society 123, ,2001, pp 10639-10649.
[24] E. O. Zayim, P. Liu, S. H. Lee, C. E. Tracy, J. A. Turner, J. R. Pit t s, S. K. De b, “Mesoporous sol-gel WO3 thin films via Poly (styrene-co-allyl- alcohol) copolymer templates ” , Solid State Ionics 165, 2003, pp 65-72.
[25] C. P. Li, F. Lin, R. M. Richards, C. Engt rakul, R. C. Tenent , C. A. Wolden, “The influence of sol-gel processing on the elect rochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition,” Solar Energy Materials & Solar Cells 121, 2014 , pp163 -170.
[26] W. T. Wu, W. P. Liao, J. S. Chen, J. J. Wu, “An Efficient Routeto Nanost ructured Tungsten Oxide Films with Improved Electrochromic Properties,” CHEMPHYSCHEM 11, 2010, pp 3306-3312.
[27] Patrick Judeinstein and Jaques Livage, “Sol–gel synthesis of WO3 thin films,” Mater. Chem, 1, 1991,pp 621-627.
[28] M.Regragui,M.Addou,A.Outzourhit,J.CBernéde,Elb. El Idrissi,E. Benseddik,A. Kachouane,” Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films” , Thin Solid Films.Volume 358, Issues 1–2, 10 January 2000, pp 40-45
[29] Toshiro Maruyama , Susumu Arai,”Electrochromic Properties of Tungsten Trioxide Thin Films Prepared by Chemical Vapor Deposition,”Journal of The Electrochemical Society, 1994,141, 1021
[30] E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, and J. Purans. “Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments,” J. Solid State Chem., Vol. 143, 1999, pp. 24-32.
[31] A.G. Souza Filho, J. Mendes Filho, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao, and U.U. Gomes. “Phase transition in WO3 microcrystals obtained by sintering process,” J. Raman Spectrosc., Vol. 32, 2001, pp. 695
[32] I. Turyan, U.O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, and D. Mandler. “Writing-Reading-Erasing on Tungsten Oxide Films Using the Scanning Electrochemical Microscope,” Advanced Materials, No. 5, 2000,pp. 330-333.
[33] T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, and E. Filippo. “WO3 gas sensors prepared by thermal oxidization of tungsten,” Sensors and Actuators B, 2008,pp. 321–326
[34] W. Sakaguchi, S. Kajita, N. Ohno, and M. Takagi. “In situ reflectivity of tungsten mirrors under helium plasma exposure,” Journal of Nuclear Materials, 2009, pp. 1149–1152
[35] Dae-Sik Lee, Sang-Do Han, Jeung-Soo Huh, and Duk-Dong Lee. “Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor,” Sensors & Actuators: B. Chemical, Vol. 60, 1999,pp. 57-63
[36] Young-ho Kim, Hiroshi Irie, and Kazuhito Hashimoto. “A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst,” Appl. Phys. Lett., 2008, pp. 182107.
[37] C.G. Granqvist. “Handbook of Inorganic Electrochromic Materials,” Elsevier, Amsterdam, 1995
[38] T. Yamase. “Photo- and Electrochromism of Polyoxometalates and Related Materials,” Chem. Rev., 1998, pp. 307–326.
[39] Se-Hee Lee, Hyeonsik M. Cheong, C. Edwin Tracy, Angelo Mascarenhas, David K. Benson, and Satyen K. Deb. “Raman spectroscopic studies of electrochromica-WO3,” Electrochimica Acta, 1999, pp. 3111-3115.
[40] J.G. Zhuang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna, and C. Bechinger. “Chromic Mechanism in Amorphous WO3 Films” , J. Electrochem. Soc., Vol. 144, 1997,pp. 2022–2041
[41] Benjamin Reichman and Allen J. Bard,” The Electrochromic Process at  WO 3 Electrodes Prepared by Vacuum Evaporation and Anodic Oxidation of W” ,The Electrochemical Society, 1979,126, 583
[42] Kai Huang, Qingtao Pan, Feng Yang, Shibi Ni, and Deyan He. “Synthesis and field-emission properties of the tungsten oxide nanowire arrays,” Physica E, 2007, pp. 219–2220
[43] Dong Yu Lu, Jian Chen, Huan Jun Chen, Li Gong, Shao Zhi Deng, and Ning Sheng Xub. ”Raman study of thermochromic phase transition in tungsten trioxide nanowires,” Appl. Phys. Lett., 2007, pp. 041919
[44] Kunquan Hong, Maohai Xie, Rong Hu, and Huasheng Wu. “Synthesizing tungsten oxide nanowires by a thermal evaporation method,” Appl. Phys. Lett., 2007, pp. 173121
[45] Chia-Ching Liao, Fu-Rong Chen, and Ji-Jung Kai. “Annealing effect on electrochromic properties of tungsten oxide nanowires” , Solar Energy Materials & Solar Cells, 2007, pp. 1258–1266
[46] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao. “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films” , Appl. Phys. Lett., 2005, pp. 141901
[47] Jian Yi Luo, Fu Li Zhao, Li Gong, Huan Jun Chen, Jun Zhou, Zheng Lin Li, Shao Zhi Deng, and Ning Sheng Xub. “Ultraviolet-visible emission from three-dimensional WO3−x nanowire networks,” Appl. Phys. Lett., 2007, pp. 093124
[48] T. Maruyama and S. Arai, J. Electrochem. Soc., 141, 1021 , 1994
[49] R. A. Batchelor, M. S. Burdis, and J. R. Siddle, J. Electrochem. Soc., 1996,143, 1050
[50] P. Judeinstein and J. Livage, J. Mater. Chem., 1, 621 ,1991
[51] M. Regragui, M. Addou, A. Outzourhit, Elb. El Idrissi, A. Kachouane, and A. Bougrine, “Electrochromic effect in WO3 thin films prepared by spray pyrolysis,” Solar Energy Materials and Solar Cells, Vol 77, Iss 4, 2003,pp 331-428
[52] P. K. Shen and A. C. C. Tseung, J. Mater. Chem., 2, 1141 ,1992
[53] H. G. Choi, Y. H. Jung, and D. K. Kim. “ Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet,” J. Am. Ceram. Soc., 2005,pp. 1684-1686
[54] Sung Jong Yoo, Ju Wan Lim, Yung-Eun Sung, Young Hwa Jung, Hong Goo Choi, and Do Kyung Kim. “Fast switchable electrochromic properties of tungsten oxide nanowire bundles,” Appl. Phys. Lett., 2007, pp. 173126
[55] Sung Jong Yoo, Young Hwa Jung, Ju Wan Lim, Hong Goo Choi, Do Kyung Kim and Yung-Eun Sung. “Electrochromic properties of one-dimensional tungsten oxide nanobundles,” Solar Energy Materials & Solar Cells, 2008,pp. 179–183
[56] Chandra Sekhar Rout, A. Govindaraj and C. N. R. Rao. “High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires,” J. Mater. Chem., 2006, pp. 3936–3941
[57] Weibing Hu, Yimin Zhao, Zuli Liu, Charles W. Dunnill, Duncan H. Gregory and Yanqiu Zhu. “Nanostructural Evolution: From One-Dimensional Tungsten Oxide Nanowires to Three-Dimensional Ferberite Flowers,” Chem. Mater., Vol. 20, No. 17, 2008,pp. 5657–5665
[58] P. C. Hiemenz, Principles of Colloid Surface Chemistry,New York,Marcel Dekker, 1997.
[59] Zhang Lide, Qi Jimei, Nano materials and Nano structures,2001
[60] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin,1998).
[61] Jen-Chuen Huang , “Pulsed Spark-Discharge Assisted Green Synthesis of Colloidal AuNPs,” National Taipei University of Technology , Electrical Engineering ,Doctor of Philosophy,2011
[62] B. V. Derjaguin and L. Landau, “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes,” Acta Phys. Chim. URSS, vol. 14, 1941,pp. 633-662
[63] E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, New York, Elsevier, 1948
[64] E. J. W. Verwey and J. TH. G. Overbeek, “Theory of the Stability of Lyophobic Colloids,” Journal of Physical and Colloid Chemistry, vol. 51, 1947, pp. 631-636.
[65] X. F. Peng, X. L. Yu, L. F. Xia and X. Zhong, “Influence Factors on Suspension Stability of Nanofluids,” Journal of Zhejiang University (Engineering Science), vol. 41 , 2007,pp. 577-580.
[66] Hong-Shiou Lin,”Preparation of Nano-Metal Fluid by Spark Discharge System and its Control Parameters Study,”National Taipei University of Technology, Department of Electrical Engineering,2012
[67] Li Gui-an, “Influence of physical properties of silver colloidal disperse system on Tyndall effect,” Journal of Shaanxi Normal University, vol.29, no.4, 2001
[68] Ren Jun, Shen Jian, Lu Shouci, “Particle Dispersion Science and Technology,” Chemical Industry Press,2005
[69] Kao-wen shou,”Magnetic-field-induced collisions of magnetic particles”,National Central University, Graduate Institute of Environmental Engineering,2004
[70] G. M. Fair, J. C. Geyer and D. A. Okum, Water Purification Andwaste Water Treatment and Disposal, New York, John Wiley and Sons, 1968
[71] Ian D. Morrison and Sydney Ross, Colloidal Dispersions: Suspensions, Emulsions, and Foams, New York, John Wiley & Sons, 2002
[72] Jen-Yi Dai,”The studies of structure,magnetic and annealing properties of [Fe3O4/ZnO]n multilayers,”National Cheng Kung University, Institute of Physics,2004.
[73] Anderson, W., Kozak, D., Coleman, V. A., Jämting, A. K., & Trau, M. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of colloid and interface science, 405, 2013, pp 322-330
[74] Tiwari, N., Pandit, R., Gaikwad, S., Gade, A., & Rai, M. Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET nanobiotechnology, 11(2), pp.2016,205-211
[75] A. Toumiat, S. Achour, A. Harabi, N. Tabet, M. Boumaour, M. Maallemi, "Effect of nitrogen reactive gas on ZnO nanostructure development prepared by thermal oxidation of sputtered metallic zinc,” Nanotechnology, vol. 17, 2006, pp. 658-663
[76] Chung-Yun Tsai,Fabrication and Characterization of Zinc Oxide Thin Films,National Taipei University of Technology, Institute of Manufacturing Technology,2008
[77] Malakpur, D., Devi, M., & Sashidhar, R. B. Biogenic synthesis, characterization and antifungal activity of gum kondagogu-silver nano bio composite construct: assessment of its mode of action. IET Nanobiotechnology. Vol. 11 Iss. 7, 2017, pp. 866-873
[78] Zou, X., Fan, H., Tian, Y., & Yan, S. Synthesis of Cu 2 O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity.CrystEngComm,16(6), 2014, 1149-1156
[79] Tang, W., D. C. “Cameron Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films 238, 83 ,1994
[80] M. Rajalakshmia and Akhilesh, K. Arora, “Optical phonon confinement in zinc oxide nanoparticles,” Journal of Applied Physics, vol. 87,, no. 5., 2000.
[81] Khan A. Alim, Vladimir A. Fonoberov, A. A. Balandin, “Origin of the optical phonon frequency shifts in ZnO quantum dots” , Applied Physics Letters, vol. 86, 2005, no. 053103.
[82] Samanta K, Bhattacharya P, Katiyar R S J. Appl. Phys. 108,113501 (2010)
[83] Arguello C A, Rousseau D L, Porto S P S. Phys. Rev. 181, 1351(1969)
[84] Aoki, T., Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi and Y. Hatanka p-Type ZnO Layer Formation by Excimer Laser Doping, Phys. Stat. Sol.(b) 229, 911(2002)
[85] Gu, Q L, C. C. Ling, G. Brauer, W. Anwand, W. Skorupa, Y. F. Hsu, A. B. Djurisic, C. Y. Zhu, S. Fung and L. W. Lu ,”Deep level defects in a nitrogen-implanted ZnO mogeneous p-n junction” , Appl. Phys. Lett. 2008,92, 222109.
[86] Lei, L. K., Xiaonan Li, Marina Canepa, Andre J.Sommer Raman analysis of nitrogen dopedZnO, Thin Solid Films 2007,515, 5282-5286
[87] Zhang Z C, Huang B B, Yu Y Q, Cui D L, Mater. Sci. Eng. B 86, 109(2001)
[88] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett., 2001,79, 943
[89] D. Li, et al., Appl. Phys. Lett. 2004 ,85, 1601
[90] X. T. Zhang, et al., J. Lumin. 2002,99, 149-154
[91] R. Sánchez Zeferino,M. Barboza Flores,and U. Pal, “Photoluminescence and Raman Scattering in Ag-doped ZnO Nanoparticles” Journal of Applied Physics , 2011,109, 014308
[92] L. Zhao, J. Lian, Y. Liu, Q. Jiang,” Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass,” Transactions of Nonferrous Metals Society of China. 18 ,2008, pp 145–149
[93] Q. Ahsanulhaq, A. Umar, Y.B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanotechnology. 18, 2007, 115603–115603
[94] H. Wang, Z.P. Zhang, X.N. Wang, Q. Mo, Y. Wang, J.H. Zhu, et al., “Selective Growth of Vertical-aligned ZnO Nanorod Arrays on Si Substrate by Catalyst-free Thermal Evaporation,” Nanoscale Research Letters. 3., 2008 , 309–314
[95] F. Fang, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, X.W. Fan, et al., Growth of well-aligned ZnO nanowire arrays on Si substrate, Nanotechnology. 18, 2007, 235604
[96] J. Huang, C. Lin, Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing, J. Appl. Phys. 103, 2008, 014304
[97] I. Shalish, et al., Phys. Rev. B 69, 2004, 245401
[98] M. H. Huang, et al., Adv. Mater. 13, 113 ,2003
[99] Charles P. Poole Jr., Frank J. Owens, Introduction to Nanotechnology (Wiley 2003)
[100] T. G. Pedersen, Phys. Stat. Sol. (c) 2, 2005, pp 4026-4030
[101] Ponappa, K., Aravindan, S., Rao, P. V., Ramkumar, J., & Gupta, M. The effect of process parameters on machining of magnesium nano alumina composites through EDM. The International Journal of Advanced Manufacturing Technology, 46(9), 2010, pp 1035-1042
[102] Gondal, M. A., Bagabas, A., Dastageer, A., & Khalil, A., “Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3.,” Journal of Molecular Catalysis A: Chemical, 323(1), 2010 , pp.78-83
[103] Ramana, C. V., Utsunomiya, S., Ewing, R. C., Julien, C. M., & Becker, U.,” Structural stability and phase transitions in WO3 thin films,” The Journal of Physical Chemistry B, 110(21), 2006, pp 10430-10435
[104] H. Habazaki, Y. Hayashi, H. Konno. Electrochimica Acta 47 p4181-4188 (2002)
[105] A. Bessiere et al., J. Appl. Phys. 91 (3) 2002, pp1589
[106] Santato C,Odziemkowski M,Ulmann M,et al.,”Crystallographically oriented mesoporous WO3 films,”Synthesis,characterization and applications [J].Journal of American Chemical Society,123(43) ,2001, pp 10639-10649
107] Adhikari, S., & Sarkar, D.. High efficient electrochromic WO3 nanofibers. Electrochimica Acta, 138, 2014, pp 115-123
[108] Xinlin Liu , Yan Yan , Zulin Da , Weidong Shi , Changchang Ma , Peng Lv , Yanfeng Tang , Guanxin Yao , Yuting Wu , Pengwei Huo , Yongsheng Yan.,“Significantly enhanced photocatalytic performance of CdS coupled WO3 nanosheets and the mechanism study,”Chemical Engineering Journal , Volume 241, April 2014 , pp 243-250
[109] LI Wen-zhang , LI Jie , WANG Xuan , HUANG Ye and CHEN Qi-yuan.“Photoluminescence of nano-structured WO3 films on different substrates,”The Chinese Journal of Nonferrous Metals., Vol.21 No.5 (2011)
[110] LEE K, SEO W, PARK J., “Synthesis and optical properties of colloidal tungsten oxide nanorods[J],” Journal of the American Chemical Society, 125(12) 2003, pp 3408−3409
[111] SZILÁGYI I M, SAUKKO S, MIZSEI J, TÓTH A L, MADARÁSZ J, POKOL G. Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S[J]. Solid State Sciences,12(11): 2010, pp 1857-1860
[112] KOMABA S, KUMAGAI N, KATO K, YASHIRO H.,”Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide[J]” ,Solid State Ionics, 135(1/4): 2000, pp 193−197
[113] Ye Ailing, He Yunqiu, “Study on photocatalytic properties of tungsten oxide and its hydrates,” Journal of Functional Materials, 12(45), 2014, pp 12042-12046
[114] B. Ahmed, S. Kumar, A.K. Ojha, P. Donfack, A. Materny, “Facile and controlledsynthesis of aligned WO3 nanorods and nanosheets as an efficientphotocatalyst material,” Spectrochim. Acta Part A 175, 2017, 250–261
[115] M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies” ,Nature, vol. 414, no. 6861, 2001, pp. 332–337
[116] Wei-Chi Chen,”Performance Enhancement from Hybrid Optoelectronic Devices Comprising Zinc Oxide Nanorods and Tungsten Oxide Layers”.Master thesis, Institute of Lighting and Energy Optoelectronics, National Jiaotong University ,2014
[117] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B.E. Gnade, J. Appl. Phys. 79. 7983 (1996)
[118] Ponappa, K., Aravindan, S., Rao, P. V., Ramkumar, J., & Gupta, M., “The effect of process parameters on machining of magnesium nano alumina composites through EDM,”The International Journal of Advanced Manufacturing Technology, 46(9), 2010 , pp 1035-1042
[119] Gondal, M. A., Bagabas, A., Dastageer, A., & Khalil, A. Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO 3. Journal of Molecular Catalysis A: Chemical, 323(1), 2010, pp 78-83
[120] C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, and A. Tacca, “Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes ,” Chemical Society Reviews, vol. 42, no. 6, 2013, pp. 2228–2246
[121] M. Schieder, T. Lunkenbein, T. Martin, W. Milius, G. Auffermann, and J. Breu, “Hierarchically porous tungsten oxide nanotubes with crystalline walls made of the metastable orthorhombic polymorph,”Journal of Materials Chemistry A, vol. 1, no. 2, 2013, pp. 381–387
[122] A. Phuruangrat, D. J. Ham, S. J. Hong, S. Thongtem, and J. S. Lee, “Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction,” Journal of Materials Chemistry, vol. 20, no. 9, 2010, pp. 1683–1690
[123] J. Zhu, S. L. Wang, S. H. Xie, and H. X. Li, “Hexagonal single crystal growth of WO3 nanorods along axis with enhanced adsorption capacity,” Chemical Communications, vol. 47, no. 15, 2011, pp. 4403– 4405
[124] H. Zhang, G. Duan, Y. Li, X. Xu, Z. Dai, and W. Cai, “Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging,” Crystal Growth and Design, vol. 12, no. 5, 2012, pp. 2646–2652
[125] Y. I. Alivov, A. V. Chernykh, M. V. Chukichev, R. Y. Korotkov, Thin Solid Film 473, 241,2005
[126] C. W. Guo, ”Growth and applications of nanoscaled ZnO,” Master thesis, National Taiwan Ocean University Department of Institute of Optoelectronic Sciences,2005
[127] Liliang Chen,Tsutomu Mashimo, Hiroki Okudera, Chihiro Iwamoto and Emil Omurzak, “Synthesis of WO3•H2O nanoparticles by pulsed plasma in liquid,” The Royal Society of Chemistry RSC Adv, 4, 2014,pp 28673–28677
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top