跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/15 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇俊暐
研究生(外文):Jun-Wei Su
論文名稱:超臨界製程與表面活性劑對化鍍鎳磷薄膜與PCB盲孔析鍍之影響
論文名稱(外文):The effects of supercritical CO2 emulsion and surfactants on the electroless nickel plating and the blind hole metallization of PCB
指導教授:李春穎李春穎引用關係
口試委員:江淑華莊賀喬彭坤增
口試日期:2018-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:93
中文關鍵詞:超臨界二氧化碳表面活性劑化學鍍鎳PCB盲孔
外文關鍵詞:supercritical carbon dioxidesurfactantselectroless nickelPCB Blind Hole
相關次數:
  • 被引用被引用:2
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品的高密度與高精度化,導致印刷電路板也朝向多層板的形勢發
展,而化鎳浸金是一種被廣泛應用於印刷電路板表面處理的製程,其中必須以鎳
作為阻障層,因此在無電鍍鎳製程中改善印刷電路板之盲孔析鍍率以及提升鍍層
的抗腐蝕性,成為本篇論文的研究重點。在不同表面活性劑中陰離子表面活性劑
SDS相較於陽離子表面活性劑CTAB,在盲孔析鍍率以及表面粗糙度的改善方面
有最好的效果,也能有效增加鍍層的抗腐蝕能力。在不同製程下,超臨界二氧化
碳相較於一般無電鍍與後超臨界製程,對於盲孔析鍍以及抗腐蝕性的改善皆有最
好的表現,是因為鍍液與超臨界二氧化碳混和後,使鍍液同時具有氣體及液體的
性質,有效降低鍍液之表面張力,增加盲孔的析鍍率,也使得鍍層表面更加細緻
且均勻,而磷含量的增加也提升鍍層之抗腐蝕能力。最後為了探討在SMT焊接作業中,當電路板通過回焊爐時,高溫是否會影響到鍍層之抗腐蝕能力,因此對鍍層進行不同溫度之熱處理,實驗結果發現,高溫能使鍍層晶粒細化,進而增強鍍層之抗腐蝕性,但由於晶間腐蝕效應,也增加了鍍層之腐蝕速度。
With the high density and high precision requirement of electronic products, printed circuit boards (PCB) are also facing the evolution into multilayer boards. Electroless nickel immersion gold (ENIG) is a process that is widely used in the surface treatment of printed circuit boards. As a barrier layer, nickel plating is required even in the blind hole of PCB to improve the corrosion resistance of further plating processes. In this study, different surfactants, mainly anionic SDS and cationic CTAB, are used to explore their possible effects on this electroless process. It is found that SDS improves the deposition rate in blind hole plating and coating’s surface roughness. The surfactants are also effective in increasing the corrosion resistance of the coating. Furthermore, different plating processes, i.e. supercritical carbon dioxide assisted electroless plating and post supercritical carbon dioxide assisted electroless plating, are investigated and compared with the conventional process.
It is obtained that supercritical carbon dioxide assisted plating has the best improvement in blind hole deposition rate and better coating’s corrosion resistance. The result is indebted to the fact that the bath mixed with supercritical carbon dioxide make it have low surface tension of gas and high mass transfusion of liquid. This nature effectively increase the deposition rate of coating in the blind hole, and also make the surface of the coating smoother and more uniform. The increase of phosphorus content in the coating also improves its corrosion resistance. To further explore whether high temperature will affect the corrosion resistance of the coating when it passes through the reflow oven in SMT soldering operations of PCB, the coating is heat-treated at different elevated temperatures. The experimental results found that annealing enables the grain refinement of the plated layer, thereby enhances the corrosion resistance of the plated layer.
摘 要…i
ABSTRACT ii
誌 謝…. 錯誤! 尚未定義書籤。
目 錄… v
表目錄… ix
第一章 前 言 1
1.1背景介紹 1
1.2研究動機與目的 3
1.3 論文架構 5
第二章 基礎理論文獻回顧 6
2.1無電鍍鎳製程 6
2.1.1無電鍍鎳之沿革 6
2.1.2無電鍍鎳之原理 7
2.1.3鍍液之組成 9
2.1.4鍍液之壽命 11
2.2超臨界相 12
2.2.1超臨界流體 12
2.2.2超臨界二氧化碳 12
2.2.3超臨界二氧化碳製程文獻回顧 14
2.2.4後超臨界二氧化碳 14
2.3界面活性劑 15
2.3.1 界面活性劑簡介 15
2.3.2界面活性劑種類 15
2.3.3 臨界膠束濃度 16
2.3.4表面活性劑文獻回顧 17
第三章 實驗方法 18
3.1無電流電鍍實驗流程 18
3.1.1無電流電鍍實驗設備 19
3.1.2無電流電鍍實驗藥品 21
3.1.3無電流電鍍液之調配 22
3.1.4試片前處理 23
3.2實驗參數設定 25
3.3薄膜微結構分析 27
3.3.1掃描式電子顯微鏡 27
3.3.2 X-ray繞射儀 28
3.3.3電子微探儀 30
3.4化學鍍液特性分析 30
3.4.1 表面接觸角分析 30
3.4.2 薄膜電化學特性分析 32
3.5表面粗糙度分析 33
3.6 孔內鍍層覆蓋性分析 34
第四章 結果與討論 35
4.1表面活性劑對鍍液接觸角之影響 35
4.2 表面活性劑對無電鍍鎳磷薄膜之影響 38
4.2.1薄膜微結構分析 39
4.2.1.1鍍層成分分析 39
4.2.1.2鍍層表面形貌 43
4.2.1.3 X-光繞射分析 45
4.2.2薄膜機械性質分析 47
4.2.2.1鍍層沉積速率 47
4.2.2.2鍍層表面粗糙度分析 48
4.2.3薄膜電化學特性分析 49
4.2.4孔內鍍層覆蓋率分析 53
4.3不同製程對無電鍍鎳磷薄膜之影響 64
4.3.1薄膜微結構分析 64
4.3.1.1鍍層成分分析 64
4.3.1.2鍍層表面形貌 66
4.3.1.3 X-光繞射分析 67
4.3.2薄膜機械性質分析 68
4.3.2.1鍍層沉積速率 68
4.3.2.2鍍層表面粗糙度分析 68
4.3.3薄膜電化學特性分析 69
4.3.4孔內鍍層覆蓋率分析 70
4.4不同熱處理溫度下對無電鍍鎳磷薄膜之影響 73
4.4.1 X-光繞射分析 73
4.4.2薄膜電化學特性分析 78
第五章 結論 84
5.1不同表面活性劑添加量對鍍液性質之影響 84
5.2不同表面活性劑添加量對無電鍍鎳磷薄膜之影響 84
5.3不同製程對無電鍍鎳磷薄膜之影響 85
5.4不同熱處理溫度對無電鍍鎳磷薄膜之影響 86
5.5未來展望 86
參考文獻 87
1.Mitchell. J. F., “The greenhouse effect and climate change,” Reviews of Geophysics, Vol. 27(1), 1989, pp.115-139.
2.http://www.nanyapcb.com.tw/nypcb/chinese/Product/PCBDevelopment.aspx,visited on 2018-5-23.
3.Lin. J., Wang. C., Wang. S., Chen. Y., He. W., Xiao. D., “Initiation electroless nickel plating by atomic hydrogen for PCB final finishing,” Chemical Engineering Journal, Vol. 306, 2016 , pp.117-123.
4.Ho. C. E., Chen. C. C., Hsu. L. H., Lu. M. K., “Electron backscatter diffraction characterization of electrolytic Cu deposition in the blind-hole structure: Current density effect,” Thin Solid Films, Vol. 84, 2015, pp.78-84.
5.Jones. T.D., Bernassau. A., Flynn. D., Price. D., Beadel. M., Desmulliez. M.P., “Copper electroplating of PCB interconnects using megasonic acoustic streaming.” Ultrasonics Sonochemistry, Vol. 42, 2018, pp.434-444.
6.Arra. M., Shangguan. D., Xie. D., Sundelin. J., Lepistö. T., Ristolainen. E., “Study of immersion silver and tin printed-circuit-board surface finishes in lead-free solder applications.” Journal of electronic materials, Vol. 33(9), 2004, pp.977-990.
7.Long. E., Toscano. L., “Electroless nickel/immersion silver—A new surface finish PCB applications,” Metal Finishing , Vol. 111(1), 2013, pp.12-19
8.Sano. M., Tahara. Y., Chen. C. Y., Chang. T. F. M., Hashimoto. T., Kurosu. H., Sone. M. “Application of supercritical carbon dioxide in catalyzation and Ni-P electroless plating of nylon 6, 6 textile,” Surface and Coatings Technology, Vol. 302, 2016, pp336-343.
9.Nwosu. N., Davidson. A., Hindle. C., Barker. M. “On the influence of surfactant incorporation during electroless nickel plating,” Industrial & Engineering Chemistry Research, Vol. 51, 2012,pp. 5635−5644.
10.Kim. B.K., Lee. S.J., Kim. J.Y., Ji. K.Y., Yoon. Y.J., Kim. M.Y., Park. S.H., Yoo. J.S.,“Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process,” Journal of Electronic Materials, Vol. 37, 2008, pp.527-534.
11.Dubin. V.M., Lopatin. S.D., ”Selective electroless Ni deposition on a TiW underlayer for integrated circuit fabrication,” Thin Solid Films, Vol. 226,1993, pp. 87-93.
12.Lee. J.Y., Lee. H.K. ”Electroless Ni-P metallization on palladium activated polyacrylonitrile (PAN) fiber by using a drying process,” Materials Chemistry and Physics, Vol. 204, 2018, pp. 257-261.
13.Wang. X., Chung. C. K., ”Mechanisms and solutions to the brittle solder joint in electroless Ni plating,” Microelectronics Reliability, Vol. 65, 2016, pp.173-177.
14.方景禮,電鍍添加劑總論,傳勝出版社,第235頁,1998。
15.楊聰仁,無電鍍鎳及其應用,國璋出版社,1987。
16.Hwang. B.J., Lin. S.H., “Reaction mechanism of electroless deposition observations of morphology evolution during nucleation and growth via tapping mode AFM, ” Journal of the Electrochemical Society, Vol. 142,1995, pp.3749-3754
17.Mallory. G.O., Juan. B.H. Electroless plating: fundamentals and applications, William Andrew, 1990.
18.荊忠胜,表面活性劑概論,中國輕工業出版社,1999。
19.Sone. M., Chang. T.F.M., Uchiyama. H., ”Crystal growth by electrodeposition with supercritical carbon dioxide emulsion,” INTECH Chapter, Vol. 11, 2013, pp.336-340.
20.陳郁欣、許名智,超臨界二氧化碳,臺北:臺灣大學科學教育發展中心,2013。
21.王鴻宇,於超臨界二氧化碳流體中以無電鍍方法製備鎳硼合金之研究,碩士論文,國立成功大學材料科學及工程學系,臺南,2009。
22.黃秋玉,應用超臨界二氧化碳電鍍鎳薄膜與奈米線之研究,碩士論文,國立中正大學化學工程研究所,嘉義,2007。
23.Yoshida. H., Sone. M., Mizushima. A., Abe. K., Tao. X. T., Ichihara. S., Miyata. S., ”Electroplating of nanostructured nickel in emulsion of supercritical carbon dioxide in electrolyte solution, ” Chemistry Letters, Vol. 31(11), 2002, pp.1086-1087.
24.Yoshida. H., Sone. M., Wakabayashi. H., Yan. H., Abe. K., Tao. X. T., Miyata. S. ”New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film. Thin solid films, ” Thin solid films, Vol. 446(2), 2004, pp.194-199.
25.Kim. M.S., Kim. J.Y., Kim. C.K., Kim. N.K., ”Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2,” Chemosphere, 2005, pp.459–465.
26.Chuang. H.C., Lai. W.H, Sanchez .J., ”An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips, ” Journal of Micromechanics and Microengineering, Vol. 25(1), 2014, 015004.
27.Nguyen. V.C., Lee. C.Y., Chang. L., Chen. F.J., Lin. C.S., ”The relationship between nano crystallite structure and internal stress in Ni coating electrodeposited by Watts bath electrolyte mixed with supercritical CO2,” Journal of The Electrochemistry Society, 2012, pp.393-399.
28.莊鴻緯,影響後超臨二氧化碳電鍍鎳之因子與機械性質之研究,碩士論文,國立臺北科技大學製造科技研究所,臺北,2013。
29.Kasaeian. A., Eshghi. A. T., Sameti. M., ”A review on the applications of nanofluids in solar energy systems, ” Renewable and Sustainable Energy Reviews, Vol. 43, 2015, pp. 584-598.
30.Kumar. G., Banu. G.S., Pappa. P.V., Sundararajan. M., Pandian. M.R., “Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats,” Journal of Ethnopharmacology,Vol. 92(1), May 2004, pp. 37-40.
31.Karakashev. S.I., Smoukov. S. K., ”CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters, ” Journal of Colloid and Interface Science, Vol. 501, 2017, pp.142-149.
32.Bergström, L. M., ”Second CMC in surfactant micellar systems,” Current Opinion in Colloid and Interface Science, Vol. 22, 2016, pp. 46-50.
33.Harkins. W.D., Mattoon. R.W., Corrin. M. L., ”Structure of soap micelles indicated by X-rays and the theory of molecular orientation. I. Aqueous solutions 1,” Journal of the American Chemical Society, Vol. 68(2), 1946, pp.220-228.
34.Elansezhian. R., Ramamoorthy. B., Nair. P.K., “Effect of surfactants on the mechanical properties of electroless (Ni–P) coating,” Surface and Coatings Technology, Vol. 203(5-7),2 008, pp. 709-712.
35.Sudagar. J., Lian. J.S., Jiang. Q., Jiang. Z.H., Li. G.Y., Elansezhian. R., “The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy.” Progress in Organic coatings, Vol. 74(4), 2012, pp.788-793.
36.Ansari. M.I., Thakur. D.G., “Influence of surfactant: Using electroless ternary nanocomposite coatings to enhance the surface properties on AZ91 magnesium alloy.” Surfaces and Interfaces, Vol. 7, 2017, pp. 20-28.
37.Abdoli. M., Rouhaghdam. A.S. ”Preparation and characterization of Ni–P/nanodiamond coatings: Effects of surfactants,” Diamond and Related Materials, Vol. 31, 2013, pp. 30-37.
38.蔡定侃、朝春光,無電鍍NiP析鍍於矽基材及應用於生長奈米碳纖之研究,碩士論文,國立交通大學,2004。
39.汪建民,材料分析,新竹:中國材料科學學會,1997。
40.林麗娟,X 光繞射原理及其應用,X 光材料分析技術與應用專題,1994。
41.許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,新竹,2004。
42.Young. T., ”An assay on the cohesion of fluids,” Philosophical Transaction of The Royal Society, Vol.95, 1805, pp.65–87.
43.Jiang. M., Zhou. B., Wang. X., “Comparisons and validations of contact angle models, ” International Journal of Hydrogen Energy, Vol. 43(12), 2018, pp. 6364-6378.
44.林懷恩,以不同電鍍製程製備鋅鍍層用於鋅空氣電池之性能探討,碩士論文,國立臺北科技大學製造科技研究所,臺北,2016。
45.Badea. G.E., Caraban. A., Sebesan. M., Dzitac. S., Cret. P., Setel. A., “Polarisation measurement used for corrosion rates determination,” Journal of Sustainable Energy, Vol. 1(1), 2010, pp.16.
46.Keong. K.G., Sha. W.,“Crystallisation kinetics and phase transformation behaviour of electroless nickel –phosphorus deposits with high phosphorus content,” Journal of Alloys and Compounds, Vol. 334, 2001, pp.192-199.
47.Elansezhian. R., Ramamoorthy. B., Nair. P.K., “The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni–P deposits, ” Journal of Materials processing technology, Vol. 209(1), 2009, pp.233-240.
48.Mafi. I. R., Dehghanian. C., “Comparison of the coating properties and corrosion rates in electroless Ni–P/PTFE composites prepared by different types of surfactants,” Applied Surface Science, Vol. 257(20), 2011, pp. 8653-8658.
49.Chen. Y., Hao. Y., Huang. W., Ji. Y., Yang. W., Yin. X., Ling. X., “Corrosion behavior of Ni-P-nano-Al2O3 composite coating in the presence of anionic and cationic surfactants,” Surface and Coatings Technology, Vol. 310, 2017, pp.122-128.
50.李勝隆,熱處理金屬材料原理與應用,全華圖書股份有限公司,2014。
51.Wenming. T. I. A. N., Songmei. L.I., Jianhua. L. I. U., Mei. Y. U., Yujie. D. U., ”Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties,” Chinese Journal of Aeronautics, Vol. 30(5), 2016,pp. 1777-1788.
52.Meng. G., Li. Y., Shao. Y., Zhang. T., Wang. Y., Wang. F., Li. X., ”Effect of microstructures on corrosion behavior of nickel coatings:(II) competitive effect of grain size and twins density on corrosion behavior,” Journal of Materials Science and Technology, Vol. 32(5), 2016, pp. 465-469.
53.Liu. L., Li. Y., Wang, F., ”Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution,” Electrochimica Acta, Vol. 53(5), 2008, pp. 2453-2462.
54.Meng. G., Li. Y., Wang. F., “The corrosion behavior of Fe–10Cr nanocrystalline coating,” Electrochimica Acta, Vol. 51(20), 2015, pp. 4277-4284.
55.Cheng. H., Leng. B., Chen. K., Jia. Y., Dong. J., Li. Z., Zhou. X., ”EPMA and TEM characterization of intergranular tellurium corrosion of Ni–16Mo–7Cr–4Fe superalloy,” Corrosion Science, Vol. 97, 2015, pp.1-6.
56.Nguyen V. C. ,以超臨界二氧化碳混合電鍍液製備之電鍍鎳的機械性質研究,博士論文,國立臺北科技大學,臺北,2016。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊