跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昱傑
研究生(外文):Yu-Jie Wang
論文名稱:血糖試片防潮罐乾燥劑之吸濕研究
論文名稱(外文):Performance and Characteristics of Desiccant for Blood Glouse Test Strip Vials
指導教授:李仁方李仁方引用關係孫殷同
指導教授(外文):Jen-Fang LeeYin-Tung Sun
口試委員:李文德張合李仁方孫殷同
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:乾燥劑粒徑相對溼度光固化樹脂血糖試片防潮罐
外文關鍵詞:DesiccantParticle sizeRelative humidityultraviolet curable resinBlood Glucose Test Strip Vials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
目前市售血糖試片防潮罐吸濕功能有限,開合數次其防潮功能有可能會失效,而血糖試片之儲存環境對其測量精度會有影響。所以本研究將改良市售血糖試片防潮罐的乾燥劑放置方式,以及更換乾燥劑材料,並探討其新的乾燥劑及市售試片罐乾燥劑的吸濕率差異。
本研究將對血糖試片乾燥罐內部空間進行濕度實驗,將試片罐內的乾燥劑替換成本實驗經點膠機點膠以及將矽粒乾燥劑磨碎後製成的乾燥劑,探討其表面積對吸濕率的影響,並與原本罐內的分子篩進行吸濕性實驗的比較,了解其吸濕特性表現。 
實驗結果顯示,乾燥劑的吸濕能力與其分布的密度相關,並且找出吸濕效率最佳之乾燥劑製備。粉狀Silica Gel以中顆粒的各項性質為最佳,其主因在於與原本的粗顆粒相較下其表面積增加了約14.7倍之多,而且吸濕率也多了約8%至11%。以細顆粒粉狀Silica Gel來說其表面積增加為粗顆粒的15.7倍,其吸濕率卻與粗顆粒相近,原因在於其顆粒過於細緻,導致空氣中的水氣無法通過其間隙使乾燥劑吸收水氣。PI薄膜點膠捲的吸濕率雖然在15.5%有些許低於市售分子篩的平均吸濕率17%,不過在平均單位吸濕量下與市售試片罐的分子篩乾燥劑相近,代表其新材料在實務上是具有可行性的。在捲狀Silica Gel與PI薄膜點膠捲實驗結果得知其吸濕率因為將乾燥粒平舖捲起時會增加其間隙使空氣通過,提升吸濕率,以Silica Gel細顆粒及中顆粒捲來說,其吸濕率表現已經高出市售試片罐分子篩的吸濕率許多,作為將來可以商業化的依據。
以傳統放置在罐蓋或罐底的乾燥罐,其吸濕率約在17%至18%左右,本實驗所改良之粉狀Siliga Gel其吸濕率最高為26%,捲狀的Silica Gel捲的吸濕率甚至可以高達34%,為市售試片罐分子篩吸濕率的兩倍。
At present, the moisture absorption function of the blood glucose test strips on the market is limited, and the moisture-proof function may lose after opening and closing several times.The storage environment of the blood glucose test strips would affect the measuring accuracy. Therefore, in this study, we will change the method for placing desiccants of commercially available moisture-proof blood glucose test strip vials, and replace materials of the desiccants. By doing so, we can discuss the difference in moisture absorption rate between the new desiccant and the one in commercially available test canister.

In this study, the experiment on the humidity of the space in the blood glucose test strip drying tank was carried out, and the desiccant in the test strip tank was replaced by the one which was prepared by the dispensing machine and being ground to discuss the difference in the moisture absorption rate when alternating surface area. Besides, we analyzed the effect on the test of hygroscopicity of the molecular sieve in the original tank to realize the hygroscopic characteristic.
The results of the experiment show that the hygroscopicity of the desiccant is related to the density of its distribution, and also the way to prepare the desiccant with the best moisture absorption efficiency.
The powdery Silica Gel is optimized for its properties in medium particles, which is due to 14.7 times wider surface area approximately and 8% to 11% higher moisture absorption than the original coarse particles. For fine particle powder Silica Gel, the surface area increases 15.7 times wider than that of the coarse particles, and(but?) the moisture absorption rate is close to that of the coarse particles. It’s because the particles are too fine for the moisture in the air to pass through the slit. As a result, the moisture cannot be absorbed by the desiccant. Although the moisture absorption rate of the PI film dot film(15.5%) is slightly lower than the average absorption rate of the commercially available molecular sieve (17.5%), the moisture absorption amount per unit is almost the same between the two kinds of the desiccants. The result indicates that the new materials are available in practice. From the roll-shaped Silica Gel and PI film dot film test, we know that the moisture absorption rate increases because the slit is widen and allows the air to pass while the dry grain is rolled up. The moisture absorption rate of using the Silica Gel fine particles and the medium particle roll is much higher than that of commercially available test-tube molecular sieves, which is a basis to commercialize in the future.
The moisture absorption rate of the drying tank which is traditionally placed on the cover or at the bottom of the can is about 17% to 18%. And that of the powdery Silica Gel modified in this experiment is up to 26%. Furthermore, if using the coiled Silica Gel coil, the moisture absorption rate can be up to 34%, which is twice as high as that of commercially available test cans.
摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機及目的 4
1.4 論文架構 5
第二章 理論及文獻 6
2.1 血糖試片的儲存 6
2.2 血糖試片酵素結晶粒大小與分布 9
2.3 血糖試片乾燥罐變色指示 12
2.4 分子篩、Silica Gel與UV膠的吸濕原理 14
第三章 實驗步驟與器材 19
3.1 實驗流程 19
3.2 實驗設備 22
3.2.1 極低濕乾燥櫃<1%RH 22
3.3.2 工業用熱風循環烘箱 23
3.2.3 微量天秤 24
3.2.4 溫溼度感測裝置ARDUINO 25
3.2.5 溫溼度感測器 26
3.2.6 精密點膠機 28
3.3 實驗乾燥劑樣式 30
3.3.1 市售分子篩 30
3.3.2 製備Silica Gel顆粒 31
3.3.3 光固化樹脂 33
3.3.4 防潮罐蓋大小的Silica Gel捲 34
3.3.5 光固化樹脂點膠乾燥劑 36
3.4 實驗內容 39
3.4.1 以烘箱乾燥量測乾燥劑吸濕實驗 39
3.4.2 乾燥劑放置乾燥罐中做乾燥罐開合量測吸濕速率實驗 41
第四章 研究結果與討論 42
4.1 市售試片罐分子篩 42
4.4.1 市售試片罐分子篩吸濕率 42
4.1.2 市售試片罐分子篩吸水量 45
4.1.3 市售試片罐分子篩開合實驗結果 46
4.1.4 市售試片罐分子篩吸濕率與顆粒大小及表面積比較 53
4.2 粉狀Silica Gel 55
4.2.1 粉狀Silica Gel 吸濕率 55
4.2.2 粉狀Silica Gel吸水量 59
4.2.3 粉狀Silica Gel開合實驗結果 60
4.2.4 粉狀Silica Gel吸濕率與顆粒大小及表面積比較 67
4.3 捲狀Silica Gel與PI薄膜點膠捲 69
4.3.1 捲狀Silica Gel與PI薄膜點膠捲吸濕率 69
4.3.2 捲狀Silica Gel與PI薄膜點膠捲吸水量 72
4.3.3 捲狀Silica Gel與PI薄膜點膠捲開合實驗結果 73
4.3.4 捲狀Silica Gel與PI薄膜點膠捲吸濕率與顆粒大小及表面積比較 81
4.4 討論 83
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 86
參考文獻 87
[1]S. Melmed, KS. Polonsky, P.R. Larsen and HM. Kronenberg, Williams textbook of endocrinology 12th, Philadelphia: Elsevier/Saunders, 2011, pp. 1371-1435.
[2]Y. Shi, F. B. Hu, “The global implications of diabetes and cancer,” The Lancet, vol. 383, 2014, pp. 1947-1948.
[3]Mathers CD, Loncar D. PLoS Med, Projections of global mortality and burden of disease from 2002 to 2030. 2006, 3(11)
[4]D. Cavan, L. Makaroff, S. Webber, et al., IDF DIABETES ATLAS 7th , International Diabetes Federation, 2015.
[5]GB. B. Kristensen, K. Nerhus, G. Thue and S. Sandberg, “Standardized evaluation of instruments for self.monitoring of blood glucose by patients and a technologist,” Clinical Chemistry, vol. 50, 2004, pp. 1068-1071.
[6]R. Tirimacco, G. Koumantakis, R. Erasmus, A. Mosca, S. Sandberg, ID. Watson, et al., “Glucose meters.fit for clinical purpose,” Clinical Chemistry and Laboratory Medicine, vol. 51, 2013, pp. 943-952.
[7]M. Tamaki, A. Kanazawa, A. Shirakami, H. Yamaguchi, Y. Tamura, T. Mita, Y. Fujitani and H. Watada, “A case of false hypoglycemia by SMBG due to improper storage of glucometer test strips,” Diabetology International, vol. 5, 2014, pp. 199-201.
[8]IB. Hirsch, “How to proceed with glucose monitoring accuracy ? An issue that requires immediate attention,” Journal of Diabetes, vol. 2, 2010, pp. 225-226.
[9]全民糖尿病觀測站,健康資訊.造成糖尿病的原因及其危險因子,中華民國糖尿病學會.
[10]The World Health Organization, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1 : diagnosis and classification of diabetes mellitus,’’ Geneva, 1999.
[11]楊旭平,糖尿病的認識與防治 (http://www.n.mart.com.tw/docs/a18.htm)
[12]N Sarwar, P Gao, SR Seshasai, R Gobin, S Kaptoge, Di Angelantonio et al. Lancet. “Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta.analysis of 102 prospective studies. Emerging Risk Factors Collaboration.” 2010. 26, 375:2215.2222.
[13]R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price et al. “Causes of vision loss worldwide, 1990.2010: a systematic analysis.” Lancet Global Health 2013;1:e339.e349.
[14]BC. Silverman, SK. Humbertson, JE. Stem and JH. Nichols, “Operational errors cause inaccurate glucose results,” Diabetes Care, vol. 23, 2000, pp. 429-430
[15]RJ. Melker, “Test strips for blood glucose monitors are not always accurate,”Diabetes Care, vol. 26, 2003, pp. 3190
[16]D. Öberg, CG. Östenson, “Performance of glucose dehydrogenase.and glucose oxidase.based blood glucose meters at high altitude and low temperature,”Diabetes Care, vol. 28, 2005, pp. 1261
[17]BH. Ginsberg, “Factors affecting blood glucose monitoring : sources of errors in measurement,” Journal of Diabetes Science and Technology, vol. 3, 2009, pp. 903-913.
[18]G. King, D. Steggles and J. S. Harrop, “Performance and storage of reagent strips for measuring blood glucose,” British Medical Journal, vol. 285, 1982, pp. 1165
[19]JM. King, CA. Eiqenmann and S. Colaqiuri, “Effect of ambient temperature and humidity on performance of blood glucose meters,” Diabetic Medicine : a Journal of the British Diabetic Association, vol. 12, 1995, pp. 337-340
[20]Y. Gonzales, IS. Kampa, “The effect of various storage environments on reagent strips,” Laboratory Medicine, vol. 28, 1997, pp. 135-137
[21]KS. Fink, DB. Christensen and A. Ellsworth, “Effect of high altitude on blood glucose meter performance,” Diabetes Technology & Therapeutics, vol. 4, 2002, pp. 627-635.
[22]MJ. Haller, JJ. Shuster, D. Schatz and RJ. Melker, “Adverse impact of temperature and humidity on blood glucose monitoring reliability : a pilot study,” Diabetes Technology & Therapeutics, vol. 9, 2007, pp. 1-9.
[23]AT. Truong, RF. Louie, JH. Vy, CM. Curtis, WJ. Ferguson, M. Lam, S. Sumner and GJ. Kost, “Effects of humidity on foil and vial packaging to preserve glucose and lactate test strips for disaster reasiness,” Disaster Medicine and Public Health Prepareness, vol. 8, 2014, pp. 51-57.
[24]張宇傑,以酵素噴覆製程製作之鍍金印刷電路板血糖試片之性能分析,碩士論文,國立台北科技大學,台北,2016。
[25]劉宇峰,血糖試片防潮罐的吸濕及變色之研究,碩士論文,國立台北科技大學,台北,2016。
[26]L.W. Wang, R. Z. Wang, R. G. Oliveira, “A review on adsorption working pairs for refrigeration”, Renewable and Sustainable Energy Reviews ,13 (2009) 518.534.
[27]陳幹男,親水性PU樹脂開發再紡織纖維製品的應用,國科會專題研究計畫,淡江大學,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top