跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/15 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李哲湑
研究生(外文):Jhe-Syu Li
論文名稱:利用亂數數學模型探討液滴凝結的物理機制
論文名稱(外文):Using a Random Number Mathematical Model to Explore the Physical Mechanism of Droplet Condensation
指導教授:許華倚
指導教授(外文):Hua-Yi Hsu
口試委員:孫殷同林銘杰
口試委員(外文):Yin-Tung SunMing-Chieh Lin
口試日期:2018-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:相位場方法接觸角曲率半徑冷凝
外文關鍵詞:Phase-Field MethodContact angleRadius of CurvatureCondensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水是人類發展與生存不可或缺的重要資源,在西亞和非洲地區,將因為氣候驟變與人口過量,使水資源的取得更加困難。而水資源的獲取,若僅僅依靠不穩定的自然降雨,已無法滿足各方面的供給需求。在較乾旱的地區,露水資源甚至能超越自然降雨量,所以,露水將有潛力作為水資源的供給來源,因此露水凝結的開發與利用,勢必是未來相當重要的工作。
本研究透過表面曲率半徑與接觸角的變化,探討空氣中水分凝結為液滴的物理機制。使用計算流體力學(Computational Fluid Dynamics, CFD)軟體進行研究,以二維的兩相流模型並配合相位場方法進行數值模擬,特別是以亂數分佈的液氣相作為相位場的初始條件來進行相位場轉換。結果顯示,在曲率半徑愈小的表面上,能夠愈快生成液滴,而親水性表面亦比疏水性表面更易於凝結液滴。本研究利用亂數數學模型模擬液滴之凝結達成初步成果,對於往後的露水凝結之研究及優化有著重要的意義。
Water is an indispensable resource for human development and survival. In West Asia and Africa, access to water resources will be made more difficult due to sudden climate change and overpopulation. The acquisition of water resources, if only relying on unstable natural rainfall, can no longer meet the supply demands. In arid areas, dew resources can even surpass natural rainfall. Therefore, dew will have potential as a source of water resources, so the development and utilization of dew condensation is bound to be a very important task in the future.
This study explored the physical mechanism of moisture condensation in the air as droplets through changes in the surface radius of curvature and contact angle. Using computational fluid dynamics (CFD) software, the two-dimensional two-phase flow model is combined with the phase-field method for numerical simulation. In particular, the phase field conversion is performed by using the liquid-vapor phase of the random distribution as initial conditions of the phase field. The results show that on the surface with the smaller radius of curvature, the droplets can be formed faster, and the hydrophilic surface is more likely to condense droplets than the hydrophobic surface.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 冷凝 3
1.4 表面潤濕性 4
1.4.1 內聚力與附著力 4
1.4.2 表面張力 5
1.4.3 楊式方程式與接觸角 7
1.4.4 蓮花效應 8
1.4.5 粗糙表面與異質表面之接觸角 9
1.5 文獻回顧 12
1.5.1 超疏水表面上冷凝液滴自主掃除 12
1.5.2 在非潤濕性表面上液滴聚合後自主跳離之現象 15
1.5.3 以奈米草微金字塔結構進行連續滴狀冷凝 17
1.5.4 數值模擬在微通道中人造腔體的流動沸騰 19
1.5.5 在光滑不對稱凸起表面上的凝結 20
1.5.6 相位場模型的數值實行所面臨之基準問題 23
1.6 文獻回顧總結 25
第二章 控制方程式與數值方法 26
2.1 簡介 26
2.2 控制方程式 26
2.2.1 連續方程式 27
2.2.2 動量守恆方程式 27
2.2.3 能量守恆方程式 27
2.3 數值方法 28
2.3.1 相位場模型 29
2.3.2 相轉換方程式 31
2.4 離散化方法 32
2.4.1 有限差分法 32
2.4.2 有限體積法 33
2.4.3 有限元素法 33
第三章 模擬步驟與參數設定 34
3.1 數值模型 35
3.2 計算區域與邊界條件 36
3.3 網格建立 38
第四章 結果與討論 39
4.1 模擬結果 39
4.1.1 表面曲率半徑0.53mm及接觸角30° 39
4.1.2 表面曲率半徑0.53mm及接觸角90° 42
4.1.3 表面曲率半徑0.53mm及接觸角150° 45
4.1.4 表面曲率半徑1.5mm及接觸角30° 48
4.1.5 表面曲率半徑1.5mm及接觸角90° 51
4.1.6 表面曲率半徑1.5mm及接觸角150° 54
4.1.7 表面曲率半徑4.2mm及接觸角30° 57
4.1.8 表面曲率半徑4.2mm及接觸角90° 60
4.1.9 表面曲率半徑4.2mm及接觸角150° 63
4.2 討論 66
第五章 結論與未來展望 68
5.1 結論 68
5.2 未來展望 68
參考文獻 69
1.Berkowicz, S.M., et al., Urban dew collection under semi-arid conditions: Jerusalem. Proceedings of the Third International Conference on Fog, Fog Collection and Dew, 2004.
2.O., C., et al., Comparison of various radiation-cooled dew condensers by computational fluid dynamics. Desalination 2009. 249(2): p. 707-712.
3.A. B. D. Cassie, S.B., Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
4.Nakae, H., et al., Effect of Surface Roughness on Wettability. Acta Materialia, 1998. 46(7): p. 2313-2318.
5.Chen, C.-H., et al., Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters, 2007. 90(17): p. 173108.
6.Patankar, N.A., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003. 19.
7.Sharan, G., et al., A very large dew and rain ridge collector in the Kutch area (Gujarat, India). Journal of Hydrology, 2011. 405(1-2): p. 171-181.
8.Monteith, J.L., Dew. Quarterly Journal of the Royal Meteorological Society, 1957. 83(357): p. 322-341.
9.Zheng, Y., et al., Directional water collection on wetted spider silk. Nature, 2010. 463(7281): p. 640-3.
10.Zibold, F.I., The role of the underground dew in water supply of Feodosia. Trudy opytnyh lesnichestc, No. III, 1905.
11.Pandey, S., Dropwise and filmwise condensation. International Journal of Scientific and Engineering Research, 2012. 3(4).
12.Patankar, N.A., Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter, 2010. 6(8): p. 1613.
13.Rose, J.W., Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A, 2002. 216.
14.Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties. In: Bracco G., Holst B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, 2013. 51: p. 3-34.
15.T., Y., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society B, 1805. 95: p. 65-87.
16.W. Barthlott, C.N., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1).
17.Wenzel, R.N., Resistance of Solid Surfaces to Wetting by Water. Journal of Industrial and Engineering Chemistry, 1936. 28(8): p. 988-994.
18.Hosono, E., et al., Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process. Journal of the American Chemical Society, 2005. 127(39): p. 13458-13459.
19.L. Barbieri, E.W., P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles. Langmuir, 2007. 23(4): p. 1723-1734.
20.A. Lafuma, D.Q., Superhydrophobic States. Nature Materials, 2003. 2(7): p. 457-460.
21.Y. C. Jung, B.B., Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces. Langmuir, 2009. 25(16): p. 9208- 9218.
22.Zeng, X.C., et al., Coexistence and Transition between Cassie and Wenzel State on Pillared Hydrophobic Surface. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(21): p. 8435-8440.
23.Boreyko, J.B. and C.-H. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Physical Review Letters, 2009. 103(18).
24.Qu, X., et al., Self-propelled sweeping removal of dropwise condensate. Applied Physics Letters, 2015. 106(22): p. 221601.
25.Liu, F., et al., Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. Journal of Fluid Mechanics, 2014. 752: p. 39-65.
26.Alizadehdakhel, A., M. Rahimi, and A.A. Alsairafi, CFD Modeling of Flow and Heat Transfer in a Thermosyphon. International Communications in Heat and Mass Transfer, 2010. 37(3): p. 312-318.
27.Ahsan, A., evaporation, condensation, and heat transfer. 2011.
28.Chen, X., et al., Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. Advanced Functional Materials, 2011. 21(24): p. 4617-4623.
29.Wörner, M., Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluidics and Nanofluidics, 2012. 12: p. 841-886.
30.Rahim Jafari, T.O.-Ö., Numerical simulation of flow boiling from an artificial cavity in a microchannel. International Journal of Heat and Mass Transfer, 2016. 97: p. 270-278.
31.John W. Cahn, J.E.H., Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28: p. 258-267.
32.Park, K.-C., et al., Condensation on slippery asymmetric bumps. Nature, 2016. 531: p. 78-82.
33.N. Moelans, B.B., P. Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad, 2008. 32: p. 268-294.
34.Emmerich, H., Advances of and by phase-field modelling in condensed-matter physics. Advances in Physics, 2008. 57(1): p. 1-87.
35.R. Duddu, D.L.C., P. Voorhees, B. Moran, Diffusional evolution of precipitates in elastic media using the extended finite element and the level set methods. Journal of Computational Physics, 2011. 230: p. 1249-1264.
36.C. Shen, Y.W., Phase-field microstructure modeling, in: L.S. Semiatin, D.U. Furrer (Eds.). Fundamentals of Modeling for Metals Processing, ASM International, 2009. 22A: p. 297-311.
37.W. J. Boettinger, J.A.W., C. Beckermann, A. Karma, Phase-field simulation of solidification. Annual Review of Materials Research, 2002. 32: p. 163-194.
38.Chen, L.-Q., Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002. 32: p. 113-140.
39.Steinbach, I., Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 2009. 17(7): p. 073001.
40.B. Nestler, A.C., Phase-field modeling of multi-component systems. Current Opinion in Solid State and Materials Science, 2011. 15: p. 93-105.
41.Steinbach, I., Phase-field model for microstructure evolution at the mesoscopic scale. Annual Review of Materials Research, 2013. 43: p. 89-107.
42.Fix, G.J., Free Boundary Problems: Theory and Applications. Pitman, 1983. 2: p. 580.
43.Langer, J., Models of pattern formation in first-order phase transitions, in: G. Grinstein, G. Mazenko (Eds.). Directions in Condensed Matter Physics, Series on Directions in Condensed Matter Physics, World Scientific, 1986: p. 165-186.
44.Jokisaari, A.M., et al., Benchmark problems for numerical implementations of phase field models. Computational Materials Science, 2017. 126: p. 139-151.
45.C. W. Hirt and B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundary. Journal of Computational Physics, 1981. 39.
46.H.A. Akhlaghi Amiri, A.A.H., Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium. International Journal of Multiphase Flow, 2013. 52: p. 22-34.
47.Héctor Gómez, V.M.C., Yuri Bazilevs, Thomas J.R. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 2008. 197(49-50): p. 4333-4352.
48.Sibbing, Z., Numerical methods for the implementation of the Cahn-Hilliard equation in one dimension and a dynamic boundary condition in two dimensions. 2015: p. 1-51.
49.P. Yue, J.J.F., C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 2004. 515: p. 293-317.
50.Badillo, A., Quantitative phase-field modeling for boiling phenomena. Physical Review E, 2012. 86(4): p. 041603-1-25.
51.Lee, W.H., A Pressure Iteration Scheme for Two-Phase Flow Modeling in: T.N. Veziroglu (Ed.). Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980. 1.
52.Z. Yang, X.F.P., P. Ye, Numerical and experimental investigation of two phase flow during boiling in a coiled tube. International Journal of Heat and Mass Transfer, 2008. 51: p. 1003-1016.
53.Rahim Jafari, T.O.-Ö., Phase-Field Modeling of Vapor Bubble Growth in a Microchannel. Journal of Computational Multiphase Flows, 2015. 7(3): p. 143-158.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top