|
1.Berkowicz, S.M., et al., Urban dew collection under semi-arid conditions: Jerusalem. Proceedings of the Third International Conference on Fog, Fog Collection and Dew, 2004. 2.O., C., et al., Comparison of various radiation-cooled dew condensers by computational fluid dynamics. Desalination 2009. 249(2): p. 707-712. 3.A. B. D. Cassie, S.B., Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551. 4.Nakae, H., et al., Effect of Surface Roughness on Wettability. Acta Materialia, 1998. 46(7): p. 2313-2318. 5.Chen, C.-H., et al., Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters, 2007. 90(17): p. 173108. 6.Patankar, N.A., On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003. 19. 7.Sharan, G., et al., A very large dew and rain ridge collector in the Kutch area (Gujarat, India). Journal of Hydrology, 2011. 405(1-2): p. 171-181. 8.Monteith, J.L., Dew. Quarterly Journal of the Royal Meteorological Society, 1957. 83(357): p. 322-341. 9.Zheng, Y., et al., Directional water collection on wetted spider silk. Nature, 2010. 463(7281): p. 640-3. 10.Zibold, F.I., The role of the underground dew in water supply of Feodosia. Trudy opytnyh lesnichestc, No. III, 1905. 11.Pandey, S., Dropwise and filmwise condensation. International Journal of Scientific and Engineering Research, 2012. 3(4). 12.Patankar, N.A., Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter, 2010. 6(8): p. 1613. 13.Rose, J.W., Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A, 2002. 216. 14.Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties. In: Bracco G., Holst B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, 2013. 51: p. 3-34. 15.T., Y., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society B, 1805. 95: p. 65-87. 16.W. Barthlott, C.N., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1). 17.Wenzel, R.N., Resistance of Solid Surfaces to Wetting by Water. Journal of Industrial and Engineering Chemistry, 1936. 28(8): p. 988-994. 18.Hosono, E., et al., Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process. Journal of the American Chemical Society, 2005. 127(39): p. 13458-13459. 19.L. Barbieri, E.W., P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles. Langmuir, 2007. 23(4): p. 1723-1734. 20.A. Lafuma, D.Q., Superhydrophobic States. Nature Materials, 2003. 2(7): p. 457-460. 21.Y. C. Jung, B.B., Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces. Langmuir, 2009. 25(16): p. 9208- 9218. 22.Zeng, X.C., et al., Coexistence and Transition between Cassie and Wenzel State on Pillared Hydrophobic Surface. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(21): p. 8435-8440. 23.Boreyko, J.B. and C.-H. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Physical Review Letters, 2009. 103(18). 24.Qu, X., et al., Self-propelled sweeping removal of dropwise condensate. Applied Physics Letters, 2015. 106(22): p. 221601. 25.Liu, F., et al., Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. Journal of Fluid Mechanics, 2014. 752: p. 39-65. 26.Alizadehdakhel, A., M. Rahimi, and A.A. Alsairafi, CFD Modeling of Flow and Heat Transfer in a Thermosyphon. International Communications in Heat and Mass Transfer, 2010. 37(3): p. 312-318. 27.Ahsan, A., evaporation, condensation, and heat transfer. 2011. 28.Chen, X., et al., Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. Advanced Functional Materials, 2011. 21(24): p. 4617-4623. 29.Wörner, M., Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluidics and Nanofluidics, 2012. 12: p. 841-886. 30.Rahim Jafari, T.O.-Ö., Numerical simulation of flow boiling from an artificial cavity in a microchannel. International Journal of Heat and Mass Transfer, 2016. 97: p. 270-278. 31.John W. Cahn, J.E.H., Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28: p. 258-267. 32.Park, K.-C., et al., Condensation on slippery asymmetric bumps. Nature, 2016. 531: p. 78-82. 33.N. Moelans, B.B., P. Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad, 2008. 32: p. 268-294. 34.Emmerich, H., Advances of and by phase-field modelling in condensed-matter physics. Advances in Physics, 2008. 57(1): p. 1-87. 35.R. Duddu, D.L.C., P. Voorhees, B. Moran, Diffusional evolution of precipitates in elastic media using the extended finite element and the level set methods. Journal of Computational Physics, 2011. 230: p. 1249-1264. 36.C. Shen, Y.W., Phase-field microstructure modeling, in: L.S. Semiatin, D.U. Furrer (Eds.). Fundamentals of Modeling for Metals Processing, ASM International, 2009. 22A: p. 297-311. 37.W. J. Boettinger, J.A.W., C. Beckermann, A. Karma, Phase-field simulation of solidification. Annual Review of Materials Research, 2002. 32: p. 163-194. 38.Chen, L.-Q., Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002. 32: p. 113-140. 39.Steinbach, I., Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 2009. 17(7): p. 073001. 40.B. Nestler, A.C., Phase-field modeling of multi-component systems. Current Opinion in Solid State and Materials Science, 2011. 15: p. 93-105. 41.Steinbach, I., Phase-field model for microstructure evolution at the mesoscopic scale. Annual Review of Materials Research, 2013. 43: p. 89-107. 42.Fix, G.J., Free Boundary Problems: Theory and Applications. Pitman, 1983. 2: p. 580. 43.Langer, J., Models of pattern formation in first-order phase transitions, in: G. Grinstein, G. Mazenko (Eds.). Directions in Condensed Matter Physics, Series on Directions in Condensed Matter Physics, World Scientific, 1986: p. 165-186. 44.Jokisaari, A.M., et al., Benchmark problems for numerical implementations of phase field models. Computational Materials Science, 2017. 126: p. 139-151. 45.C. W. Hirt and B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundary. Journal of Computational Physics, 1981. 39. 46.H.A. Akhlaghi Amiri, A.A.H., Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium. International Journal of Multiphase Flow, 2013. 52: p. 22-34. 47.Héctor Gómez, V.M.C., Yuri Bazilevs, Thomas J.R. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 2008. 197(49-50): p. 4333-4352. 48.Sibbing, Z., Numerical methods for the implementation of the Cahn-Hilliard equation in one dimension and a dynamic boundary condition in two dimensions. 2015: p. 1-51. 49.P. Yue, J.J.F., C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 2004. 515: p. 293-317. 50.Badillo, A., Quantitative phase-field modeling for boiling phenomena. Physical Review E, 2012. 86(4): p. 041603-1-25. 51.Lee, W.H., A Pressure Iteration Scheme for Two-Phase Flow Modeling in: T.N. Veziroglu (Ed.). Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980. 1. 52.Z. Yang, X.F.P., P. Ye, Numerical and experimental investigation of two phase flow during boiling in a coiled tube. International Journal of Heat and Mass Transfer, 2008. 51: p. 1003-1016. 53.Rahim Jafari, T.O.-Ö., Phase-Field Modeling of Vapor Bubble Growth in a Microchannel. Journal of Computational Multiphase Flows, 2015. 7(3): p. 143-158.
|