[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
[2] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics, 103 (2007) 41-46.
[3] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172.
[4] S.G.M. Y. Zhang, P. K. Liaw, Z. Tang, Y. Q. Cheng Broad guidelines in predicting phase formation of high-entropy alloys, MRS Communications, submitted for publication.
[5] 黃處明, 高熵合金與304不銹鋼之異種銲接研究, in: 精密與自動化工程學程碩士班, 國立交通大學, 新竹市, 2004, pp. 77.[6] 葉延益, 銲後熱處理對Fe-Co-Ni-Cr-Cu-Alx-C0.1銲件性能影響之研究, in: 工學院碩士在職專班精密與自動化工程學程, 國立交通大學, 新竹市, 2005, pp. 80.[7] 潘聖富, 多元高熵合金與304不鏽鋼異種銲接研究, in: 機械工程系所, 國立交通大學, 新竹市, 2005, pp. 84.
[8] 邱垂昌, 銀基填料對高熵合金真空硬銲特性之研究, in: 工學院碩士在職專班精密與自動化工程學程, 國立交通大學, 新竹市, 2005, pp. 64.[9] D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, A. Hu, Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal, Materials Letters, 215 (2018) 11-14.
[10] N. Kashaev, V. Ventzke, N. Stepanov, D. Shaysultanov, V. Sanin, S. Zherebtsov, Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis, Intermetallics, 96 (2018) 63-71.
[11] Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, C.H. Shek, Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy, Materials Letters, 205 (2017) 142-144.
[12] Z. Wu, S.A. David, Z. Feng, H. Bei, Weldability of a high entropy CrMnFeCoNi alloy, Scripta Materialia, 124 (2016) 81-85.
[13] C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu 0.5 alloy at elevated temperature, Journal of Alloys and Compounds, 489 (2010) 30-35.
[14] C.-M. Lin, H.-L. Tsai, H.-Y. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics, 18 (2010) 1244-1250.
[15] C.-M. Lin, H.-L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy, Materials Chemistry and Physics, 128 (2011) 50-56.
[16] W.H. Kearns, Welding Handbook, American Welding Society, 1980.
[17] W. Savage, E. Nippes, F. Wassell, Dynamic contact resistance of series spot welds, Welding Journal, 57 (1978) 43s-50s.
[18] E. W. Kim, T. Eagar, Parametric Analysis of Resistance Spot Welding Lobe Curve, 1988.
[19] N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets Part 1 Modelling and control of weld nugget formation, International Materials Reviews, 49 (2004) 45-75.
[20] M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, New Jersey, 1989.
[21] Ş. Kasman, Multi-response optimization using the Taguchi-based grey relational analysis: a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111, The International Journal of Advanced Manufacturing Technology, 68 (2013) 795-804.
[22] S. Mondal, C.P. Paul, L.M. Kukreja, A. Bandyopadhyay, P.K. Pal, Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, The International Journal of Advanced Manufacturing Technology, 66 (2013) 91-96.
[23] B. Acherjee, A.S. Kuar, S. Mitra, D. Misra, Application of grey-based Taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics, The International Journal of Advanced Manufacturing Technology, 56 (2011) 995-1006.
[24] D. Ju-Long, Control problems of grey systems, Systems & Control Letters, 1 (1982) 288-294.
[25] D.C. Montgomery, Design and Analysis of Experiments, New York : John Wiley & Sons, 2013.
[26] G.E.P. Box, K.B. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological), 13 (1951) 1-45.
[27] G. Mallaiah, A. Kumar, P. Ravinder Reddy, G. Madhusudhan Reddy, Influence of grain refining elements on mechanical properties of AISI 430 ferritic stainless steel weldments – Taguchi approach, Materials & Design (1980-2015), 36 (2012) 443-450.
[28] K. Panneerselvam, S. Aravindan, A. Noorul Haq, Study on resistance welding of glass fiber reinforced thermoplastic composites, Materials & Design, 41 (2012) 453-459.
[29] M. Tutar, H. Aydin, C. Yuce, N. Yavuz, A. Bayram, The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials & Design, 63 (2014) 789-797.
[30] S. Shafee, B.B. Naik, K. Sammaiah, Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method, Materials Today: Proceedings, 2 (2015) 2595-2604.
[31] U. Eşme, Application of Taguchi method for the optimization of resistance spot welding process, The Arabian Journal for Science and Engineering, 34 (2009) 519-528.
[32] J. Antony, Simultaneous Optimisation of Multiple Quality Characteristics in Manufacturing Processes Using Taguchis Quality Loss Function, The International Journal of Advanced Manufacturing Technology, 17 (2001) 134-138.
[33] R. Jeyapaul, P. Shahabudeen, K. Krishnaiah, Quality management research by considering multi-response problems in the Taguchi method – a review, The International Journal of Advanced Manufacturing Technology, 26 (2005) 1331-1337.
[34] N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, Journal of Mechanical Science and Technology, 26 (2012) 2365-2370.
[35] N. Muhammad, Y.H.P. Manurung, R. Jaafar, S.K. Abas, G. Tham, E. Haruman, Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology, Journal of Intelligent Manufacturing, 24 (2013) 1175-1183.
[36] D. Zhao, Y. Wang, S. Sheng, Z. Lin, Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology, Journal of Intelligent Manufacturing, 25 (2014) 1335-1348.
[37] ASTM E112-13, Standard Tes Methods for Determining Average Grain Size, in, ASTM International, West Conshohocken, PA, USA, 2010.
[38] American Welding Society D8.9M, Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, in, American Welding Society, Miami, FL, USA, 2012.
[39] A. Al-Mukhtar, Review of resistance spot welding sheets: Processes, and Failure Mode, Advanced Engineering Forum, 17 (2016) 31-57.
[40] M.H. Razmpoosh, M. Shamanian, M. Esmailzadeh, The microstructural evolution and mechanical properties of resistance spot welded Fe–31Mn–3Al–3Si TWIP steel, Materials & Design, 67 (2015) 571-576.
[41] L.J. Zhang, J.T. Fan, D.J. Liu, M.D. Zhang, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, Journal of Alloys and Compounds, 745 (2018) 75-83.
[42] S. Kumar, A.S. Shahi, Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds, Materials & Design, 89 (2016) 399-412.
[43] Ó. Martín, P.D. Tiedra, M. López, M. San-Juan, C. García, F. Martín, Y. Blanco, Quality prediction of resistance spot welding joints of 304 austenitic stainless steel, Materials & Design, 30 (2009) 68-77.
[44] A. Di Schino, I. Salvatori, J.M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel, Journal of materials science, (2002) 4561.
[45] S. Kou, Solidification and liquation cracking issues in welding, JOM, 55 (2003) 37-42.
[46] J. C. Lippold, W. A. Baeslack III, I. Varol, Heat-affected zone liquation cracking in austenitic and duplex stainless steels, Welding Journal, 71 (1988) 1-14.
[47] C.B. Alcock, V.P. Itkin, M.K. Horrigan, Vapour Pressure Equations for the Metallic Elements: 298–2500K, Canadian Metallurgical Quarterly, 23 (1984) 309-313.
[48] S.K. Choong, THERMOPHYSICAL PROPERTIES OF STAINLESS STEELS, Argonne National Laboratory Report, Argonne, IL, USA, 1975.
[49] Y. Qiuping, Z. Yaohe, Numerical simulation of convection in the two-phase zone of a binary alloy, International Journal of Heat and Mass Transfer, 34 (1991) 843-852.