跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/15 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉祺
研究生(外文):Jia-Chi Li
論文名稱:以田口-灰關聯-反應曲面法探討電阻點銲製程應用FeCoNiCrCu0.5高熵合金與AISI 304L不鏽鋼接合之特性與其銲後裂縫形成機制探討
論文名稱(外文):Application of Taguchi-Grey-Response Surface Method to Resistance Spot Welding of Dissimilar for High-Entropy FeCoNiCrCu0.5 Alloys-to-AISI 304L Stainless Steel: characteristics of welding and post-weld cracking formation
指導教授:陳政順陳政順引用關係林俊銘林俊銘引用關係
指導教授(外文):Cheng-Shun ChenChun-Ming Lin
口試委員:陳政順林俊銘韓麗龍梁誠顏鴻威
口試日期:2018-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:113
中文關鍵詞:反應曲面法灰關聯分析田口方法微結構銲接冶金異質金屬接合電阻點銲高熵合金
外文關鍵詞:Response surface methodGrey relational analysisTaguchi methodMicrostructureWelding metallurgyDissimilar metal weldingResistance spot weldingHigh entropy alloys
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用電阻點銲製程將FeCoNiCrCu0.5高熵合金與AISI 304L不鏽鋼進行異質接合,在製程中設計一套多重品質特性分析方式進行參數設計,並對不同銲接熱循環下,結構以及硬度變化進行探討,最後針對銲後裂縫形成機制進行研究。多重品質特性分析結合了田口方法(Taguchi method)、灰關聯分析(Grey relational analysis)與反應曲面法(Response surface method)進行穩健參數設計; 結構的部分利用實體顯微鏡、光學顯微鏡(OM)與掃描式電子顯微鏡(SEM)進行巨觀以及微觀結構觀察,能量分散光譜儀(EDS)用於成份分析; 維克式硬度測試用於硬度量測。
多重品質特性分析使用熔融區、FeCoNiCrCu0.5熱影響區、AISI 304L熱影響區的硬度值作為品質計量,分析結果設計得銲接參數之銲接電流5.25 kA、銲接時間24 cycle、電極壓力0.6 MPa,熔融區、FeCoNiCrCu0.5熱影響區、AISI 304L熱影響區硬度值分別為136.7 Hv、156.9 Hv、181.5 Hv,分別較試誤法所得之銲接曲線(Love curve)設計參數的硬度值137.4 Hv、145.2 Hv、174.2 Hv提升-0.5 %、8 %、4.2 %,證明多重品質特性分析之操作可行性。
銲接結構變化觀察發現,隨著銲接入熱量的上升,銲核有成長的趨勢,若入熱量過大則會導致銲點表面的噴濺以及接合處的飛濺現象,導致冷卻後於熔融區內形成空穴; 微結構的部分,熔融區析出1~3 um的球狀Cu-rich相,且隨著入熱量的上升有細小化的趨勢; 硬度變化的部份,FZ與FeCoNiCrCu0.5熱影響區的硬度均較FeCoNiCrCu0.5 HEA低,因Cu與Co、Ni、Cr之結合焓為正值,加上銲接入熱量令元素間的鍵結能力下降所導致,另外,FeCoNiCrCu0.5熱影響區、AISI 304L熱影響區的硬度隨入熱量上升而有下降趨勢,為銲接熱能令晶粒粗化導致硬度下降。
銲接試片內部發現大量裂縫,其裂開方式類似於凝固裂縫與液化裂縫,可歸納為一複合型的裂縫機制。在銲接升溫過程中,FZ的元素中以Cu的沸點最低,隨溫度上升而汽化,在基底的包覆下形成Cu的氣泡,降溫凝固的過程中,汽化Cu凝結為液態,由於Cu的蒸氣壓極大而發生虹吸現象,部分被基底吸入形成Cu的薄膜,另一部分則析出基底形成球狀Cu-rich phase,另一方面,由於電極夾頭夾持之壓應力與銲接之熱應力導致試片部份發生塑性變形,加上冷卻產生之收縮應力,拉、壓應力交互作用下導致FZ自Cu的薄膜產生裂口並沿晶界裂開,此外,FZ與FeCoNiCrCu0.5熱影響區交界處之部分熔融區液化並同樣因為拉、應力導致裂口,並沿FeCoNiCrCu0.5熱影響區Cu-rich相裂開。
The present study utilized the dissimilar welding process of resistance spot welding to join high-entropy FeCoNiCrCu0.5 alloy with AISI 304L stainless steel. A multi-quality characteristic analysis method was designed for the process parameter design, and the structure and hardness change under different welding thermal cycles were discussed. Finally, the mechanism of post-weld cracking formation was studied. Multi-quality analysis combined with Taguchi method, grey relational analysis and response surface method for robust parameter design.; Macrostructure and microstructure of welding specimens were examined using a stereoscopic microscope, an optical microscope (OM) and a scanning microscope (SEM). The chemical composition was studied using an energy dispersive spectrometer (EDS). The profile of the hardness distribution of the microstructures was obtained using a Vickers hardness tester.
The multi-quality characteristics analysis used the hardness of the fusion zone (FZ), FeCoNiCrCu0.5 heat affected zone (HAZ) and AISI 304L stainless steel HAZ as the quality measurement. The parameters obtained by multi-quality characteristics were welding current of 5.25 kA, welding time of 24 cycle, and electrode force of 0.6 MPa, and the hardness of the FZ, FeCoNiCrCu0.5-HAZ, and AISI 304L-HAZ were 136.7 Hv, 156.9 Hv, and 181.5 Hv. The hardness of the design parameters of the lobe curve, which were obtained by trial and error method, were 137.4 Hv, 145.2 Hv, and 174.2 Hv. The designed parameters were -0.5%, 8%, and 4.2% higher than the original design, which proved the operational feasibility of multi-quality characteristics analysis.
Macrostructure shown that the nuggets grow up as the welding heat input increase. But if the heat input overload, surface splashing and joint expulsion occurred which result in the formation of the cavity in the FZ. In microstructure, 1~3 um spherical Cu-rich phase precipitated in the FZ, and become finer with increasing heat input. The hardness of the FZ and the FeCoNiCrCu0.5-HAZ were lower than FeCoNiCrCu0.5, because the positive mixing enthalpies of Cu, Co, Ni, Cr, moreover, the heat input lower the bonding strength of the elements. In addition, the hardness of the FeCoNiCrCu0.5-HAZ and the AISI 304L-HAZ decreased with increasing heat input. This phenomenon is owing to the high heat input lead to coarser grains which lower the hardness.
A large number of cracks were found inside the welding specimens. The cracking mode was similar to the solidification cracking and liquation cracking, which can be summarized as a composite cracking mechanism. During the welding process, among the elements of FZ, copper has the lowest boiling point and vaporizes as the temperature rises. Under the cover of the substrate, Cu bubbles were formed. In the cooling and solidification process, the vaporized Cu condensed into a liquid state, and the siphon phenomenon occurs due to the vapor pressure of copper, which led part of Cu liquid inhale into the substrate and formed Cu films. The others precipitated onto the substrate and formed a spherical copper-rich phase. On the other hand, due to the compressive stress of the electrode clamping and the thermal stress of the welding, the specimen is partially plastically deformed. In addition, the shrinkage stress, tension and compressive stress generated by cooling, which led to the crack initiate from the Cu films and then growth along the grain boundary in FZ. Moreover, partially melted zone which is in the boundary of FZ and FeCoNiCrCu0.5-HAZ liquefied during welding and cracking along the Cu-rich phase of FeCoNiCrCu0.5-HAZ.
摘 要 i
ABSTRACT iii
誌謝 v
目 錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 高熵合金 4
2.1.1 開發背景 4
2.1.2 高熵合金的特點 5
2.1.3 高熵合金之銲接性質探討 9
2.1.4 FeCoNiCrCu0.5高熵合金 15
2.2 電阻點銲 17
2.2.1 電阻點銲的原理 17
2.2.2 影響電阻點銲的參數 18
2.3 參數設計方法 22
2.3.1 田口方法 22
2.3.2 灰關聯分析 26
2.3.3 反應曲面法 28
2.3.4 結合田口方法、灰關聯分析、反應曲面法之參數設計 29
第三章 實驗步驟 30
3.1 電阻點銲 30
3.1.1 銲接試片製備 30
3.1.2 電阻點銲實驗 30
3.1.3 田口實驗設計 32
3.2 微結構觀察 33
3.2.1 金相觀察 33
3.2.2 掃描式電子顯微鏡 34
3.3 微克氏硬度測試 34
第四章 結果與討論 35
4.1 多重品質特性參數設計 35
4.1.1 前置實驗結果分析 35
4.1.2 田口方法分析 40
4.1.2.1 熔融區硬度之田口分析 40
4.1.2.2 FeCoNiCrCu0.5高熵合金熱影響區硬度之田口分析
45
4.1.2.3 AISI 304L不鏽鋼熱影響區硬度之田口分析 48
4.1.2 灰關聯分析 52
4.1.3 反應曲面法 55
4.2 材料結構變化探討 58
4.2.1 巨觀結構變化 58
4.2.2 微觀結構變化 62
4.3 硬度變化分析 82
4.4 裂縫形成機制分析 86
4.5 確認實驗 101
第五章 結論與未來展望 107
5.1 結論 107
5.2 未來研究方向 109
參考文獻 110
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
[2] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics, 103 (2007) 41-46.
[3] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172.
[4] S.G.M. Y. Zhang, P. K. Liaw, Z. Tang, Y. Q. Cheng Broad guidelines in predicting phase formation of high-entropy alloys, MRS Communications, submitted for publication.
[5] 黃處明, 高熵合金與304不銹鋼之異種銲接研究, in: 精密與自動化工程學程碩士班, 國立交通大學, 新竹市, 2004, pp. 77.
[6] 葉延益, 銲後熱處理對Fe-Co-Ni-Cr-Cu-Alx-C0.1銲件性能影響之研究, in: 工學院碩士在職專班精密與自動化工程學程, 國立交通大學, 新竹市, 2005, pp. 80.
[7] 潘聖富, 多元高熵合金與304不鏽鋼異種銲接研究, in: 機械工程系所, 國立交通大學, 新竹市, 2005, pp. 84.
[8] 邱垂昌, 銀基填料對高熵合金真空硬銲特性之研究, in: 工學院碩士在職專班精密與自動化工程學程, 國立交通大學, 新竹市, 2005, pp. 64.
[9] D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, A. Hu, Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal, Materials Letters, 215 (2018) 11-14.
[10] N. Kashaev, V. Ventzke, N. Stepanov, D. Shaysultanov, V. Sanin, S. Zherebtsov, Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis, Intermetallics, 96 (2018) 63-71.
[11] Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, C.H. Shek, Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy, Materials Letters, 205 (2017) 142-144.
[12] Z. Wu, S.A. David, Z. Feng, H. Bei, Weldability of a high entropy CrMnFeCoNi alloy, Scripta Materialia, 124 (2016) 81-85.
[13] C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu 0.5 alloy at elevated temperature, Journal of Alloys and Compounds, 489 (2010) 30-35.
[14] C.-M. Lin, H.-L. Tsai, H.-Y. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics, 18 (2010) 1244-1250.
[15] C.-M. Lin, H.-L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy, Materials Chemistry and Physics, 128 (2011) 50-56.
[16] W.H. Kearns, Welding Handbook, American Welding Society, 1980.
[17] W. Savage, E. Nippes, F. Wassell, Dynamic contact resistance of series spot welds, Welding Journal, 57 (1978) 43s-50s.
[18] E. W. Kim, T. Eagar, Parametric Analysis of Resistance Spot Welding Lobe Curve, 1988.
[19] N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets Part 1 Modelling and control of weld nugget formation, International Materials Reviews, 49 (2004) 45-75.
[20] M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, New Jersey, 1989.
[21] Ş. Kasman, Multi-response optimization using the Taguchi-based grey relational analysis: a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111, The International Journal of Advanced Manufacturing Technology, 68 (2013) 795-804.
[22] S. Mondal, C.P. Paul, L.M. Kukreja, A. Bandyopadhyay, P.K. Pal, Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, The International Journal of Advanced Manufacturing Technology, 66 (2013) 91-96.
[23] B. Acherjee, A.S. Kuar, S. Mitra, D. Misra, Application of grey-based Taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics, The International Journal of Advanced Manufacturing Technology, 56 (2011) 995-1006.
[24] D. Ju-Long, Control problems of grey systems, Systems & Control Letters, 1 (1982) 288-294.
[25] D.C. Montgomery, Design and Analysis of Experiments, New York : John Wiley & Sons, 2013.
[26] G.E.P. Box, K.B. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological), 13 (1951) 1-45.
[27] G. Mallaiah, A. Kumar, P. Ravinder Reddy, G. Madhusudhan Reddy, Influence of grain refining elements on mechanical properties of AISI 430 ferritic stainless steel weldments – Taguchi approach, Materials & Design (1980-2015), 36 (2012) 443-450.
[28] K. Panneerselvam, S. Aravindan, A. Noorul Haq, Study on resistance welding of glass fiber reinforced thermoplastic composites, Materials & Design, 41 (2012) 453-459.
[29] M. Tutar, H. Aydin, C. Yuce, N. Yavuz, A. Bayram, The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials & Design, 63 (2014) 789-797.
[30] S. Shafee, B.B. Naik, K. Sammaiah, Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method, Materials Today: Proceedings, 2 (2015) 2595-2604.
[31] U. Eşme, Application of Taguchi method for the optimization of resistance spot welding process, The Arabian Journal for Science and Engineering, 34 (2009) 519-528.
[32] J. Antony, Simultaneous Optimisation of Multiple Quality Characteristics in Manufacturing Processes Using Taguchis Quality Loss Function, The International Journal of Advanced Manufacturing Technology, 17 (2001) 134-138.
[33] R. Jeyapaul, P. Shahabudeen, K. Krishnaiah, Quality management research by considering multi-response problems in the Taguchi method – a review, The International Journal of Advanced Manufacturing Technology, 26 (2005) 1331-1337.
[34] N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, Journal of Mechanical Science and Technology, 26 (2012) 2365-2370.
[35] N. Muhammad, Y.H.P. Manurung, R. Jaafar, S.K. Abas, G. Tham, E. Haruman, Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology, Journal of Intelligent Manufacturing, 24 (2013) 1175-1183.
[36] D. Zhao, Y. Wang, S. Sheng, Z. Lin, Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology, Journal of Intelligent Manufacturing, 25 (2014) 1335-1348.
[37] ASTM E112-13, Standard Tes Methods for Determining Average Grain Size, in, ASTM International, West Conshohocken, PA, USA, 2010.
[38] American Welding Society D8.9M, Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, in, American Welding Society, Miami, FL, USA, 2012.
[39] A. Al-Mukhtar, Review of resistance spot welding sheets: Processes, and Failure Mode, Advanced Engineering Forum, 17 (2016) 31-57.
[40] M.H. Razmpoosh, M. Shamanian, M. Esmailzadeh, The microstructural evolution and mechanical properties of resistance spot welded Fe–31Mn–3Al–3Si TWIP steel, Materials & Design, 67 (2015) 571-576.
[41] L.J. Zhang, J.T. Fan, D.J. Liu, M.D. Zhang, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, Journal of Alloys and Compounds, 745 (2018) 75-83.
[42] S. Kumar, A.S. Shahi, Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds, Materials & Design, 89 (2016) 399-412.
[43] Ó. Martín, P.D. Tiedra, M. López, M. San-Juan, C. García, F. Martín, Y. Blanco, Quality prediction of resistance spot welding joints of 304 austenitic stainless steel, Materials & Design, 30 (2009) 68-77.
[44] A. Di Schino, I. Salvatori, J.M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel, Journal of materials science, (2002) 4561.
[45] S. Kou, Solidification and liquation cracking issues in welding, JOM, 55 (2003) 37-42.
[46] J. C. Lippold, W. A. Baeslack III, I. Varol, Heat-affected zone liquation cracking in austenitic and duplex stainless steels, Welding Journal, 71 (1988) 1-14.
[47] C.B. Alcock, V.P. Itkin, M.K. Horrigan, Vapour Pressure Equations for the Metallic Elements: 298–2500K, Canadian Metallurgical Quarterly, 23 (1984) 309-313.
[48] S.K. Choong, THERMOPHYSICAL PROPERTIES OF STAINLESS STEELS, Argonne National Laboratory Report, Argonne, IL, USA, 1975.
[49] Y. Qiuping, Z. Yaohe, Numerical simulation of convection in the two-phase zone of a binary alloy, International Journal of Heat and Mass Transfer, 34 (1991) 843-852.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊