|
[1]R. Wang, L. Niu, Q. Li, Q. Liu, and H. Zuo, "The peritubular reinforcement effect of porous dentine microstructure," PloS. ONE, vol. 12, 2017 [2]G. L. Giudice, G. Cutroneo, A. Centofanti, A. Artemisia, E. Bramanti, A. Militi, G. Rizzo, A. Favaloro, A. Irrera, R. O. Giudice, and M. Cicciù, "Dentin morphology of root canal surface: a quantitative evaluation based on a scanning electronic microscopy study," BioMed. Research International, 2015 [3]W. Grayson, Jr. Marshall, S.J. Marshall, J.H. Kinney and M. Balooch, "The dentin substrate: structure and properties related to bonding," J. Dent., vol. 25, pp. 441-458, 1997 [4]R. M. Carvalho, A. O. Fernandes, R. Villanueva, L. Wang, and D. H. Pashley, "Tensile strength of human dentin as a function of tubule orientation and density," J. Adhes. Dent., vol. 3, 2001 [5]R. Garberoglio and M. Brӓnnstrӧm, "Scanning electron microscopic investigation of human dentinal tubules," Arch. Oral Biol., vol. 21, pp. 355-362, 1976 [6]B. Sӧgaard-Pedersen, H. Boye and M. E. Matthiessen, "Scanning electron microscope observations on collagen fibers in human dentin and pulp," Scand. J. Dent. Res., vol. 98, pp. 89-95, 1990 [7]S. Habelitz, B. J. Rodriguez, S. J. Marshall, G. W. Marshall, S. V. Kalinin and A. Gruverman, "Peritubular dentin lacks piezoelectricity," J. Dent. Res., vol. 86, pp. 908-911, 2007 [8]S. Weiner, A. Veis, E. Beniash, T. Arad, J. W. Dillon, B. Sabsay and F. Siddiqui, "Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth," J. Struct. Biol., vol. 126, pp. 27-41, 1999 [9]A. Boyde and K. S. Lester, "An electron microscope study of fractured dentinal surfaces," Calcif. Tissue. Res., vol. 1, pp. 122-136, 1967 [10]M. Toparli and N. S. Hohsal, "Hardness and yield strength of dentin from simulated nano-indentation tests," Comput. Methods Programs Biomed., vol 77, pp. 253-257, 2005 [11]S. Inoue, Patricia N. R. Pereira, C. Kawamoto, M. Nakajima, K. Koshiro, J. Tagami, R. M. Carvalho, D. H. Pashley, and H. Sano, "Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin," Dent. Mater. J., vol. 22, pp. 39-47, 2003 [12]N. Iwamoto and N. D. Ruse, "Fracture toughness of human dentin," J. Biomed. Mater. Res. A., vol. 66, pp. 507-512, 2003 [13]D. D. Arola and R. K. Reproqel, "Tubule orientation and the fatigue strength of human dentin," Biomaterials, vol. 27, pp. 2131-3140, 2006 [14]J. H. Kinney, M. Baloocha, G. W. Marshallb, and S. J. Marshallb, "A micromechanics model of the elastic properties of human dentin," Archs. Oral Biol., vol. 44, pp. 813-822, 1999 [15]V. Lertchirakarn, J. E. Palamara, and H. H. Messer, "Anisotropy of tensile strength of root dentin," J. Dent. Res., vol. 80, pp. 453-456, 2001 [16]R. Jeanneret, C. Arson, and E. Vennat, "Homogenization of dentin elastic properties based on microstructure characterization, statistical back-analysis and FEM simulation," Poromechanics Ⅵ., 2017 [17]E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, "The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study," J. Dent., vol. 28, pp. 589-594, 2000 [18]J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So, and J. D. Maynard, "Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin," J. Biomech., vol. 37, pp. 437-441, 2004 [19]M. Ferrari, F. Mannocci, A. Vichi, M. C.Caqidiaco and A. Mjӧr, "Bonding to root canal:structure characteristics of the substrate," Am. J. Dent., vol. 13, pp. 255-260, 2000 [20]G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif and M. Balooch, "Evaluation of a new modulus mapping technique to investigate microstructure features of human teeth," J. Biomech., vol. 37, pp. 1223-1232, 2004 [21]G. W. Marshall, "Dentin: microstructure and characterization," Quintessence Int., vol. 24, pp. 606-617, 1993 [22]C. Montoya, D. Arola and E. A. Ossa, "Importance of tubule density to the fracture toughness of dentin," Arch. Oral Biol., vol. 67, pp. 9-14, 2016 [23]B. Huo, "An inhomogeneous and anisotropic constitutive model of human dentin," J. Biomech., vol. 38, pp. 587-594, 2005 [24]J. H. Kinney, M. Balooch, S. J. Marshall, G. W. Marshall and T. P. Weihs, "Hardness and Young’s modulus of human peritubular and intertubular dentine," Arch. Oral Biol., vol. 41, pp. 9-13, 1996 [25]L. Angker, M. V. Swain and N. Kilpatrick, "Characterising the micro-mechanical behavior of the carious dentine of primary teeth using nano-indentation," J. Biomech., vol. 38, pp. 1535-1542, 2005 [26]Y. R. Zhang, W. Du, X. D. Zhou and H. Y. Yu, "Review of research on the mechanical properties of the human tooth," Int. J. Oral Sci., vol. 6, pp. 61-69, 2014 [27]D. Pashley, A. Okabe and P. Parham, "The relationship between dentin microhardness and tubule density," Endod. Dent. Traumatol., vol. 1, pp. 176-179, 1985 [28]J. H. Kinney, S. J. Marshall and G. W. Marshall, "The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature," Crit. Rev. Oral Biol Med., vol. 14, pp. 13-29, 2003 [29]R. G. Craig and F. A. Peyton, "Elastic and mechanical properties of human dentin," J. Dent. Res., vol. 37, pp. 710-718, 1958 [30]R. G. Craig, F. A. Peyton and D. E. Johnson, "Compression properties of enamel, dental cements and gold," J. Endod., vol. 18, pp. 209-215, 1992 [31]T. G. Huang, H. Schilder and D. Nathanson, "Effects of moisture content and endodontic treatment on some mechanical properties of human dentin," J. Dent. Res., vol. 40, pp. 936-945, 1960 [32]N. Iwamoto and N. D. Ruse, "Fracture toughness of human dentin," J. Biomed. Mater. Res. A., vol. 66, pp. 507-512, 2003 [33]R. K. Nalla, J. H. Kinney and R. O. Ritchie, "Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms," Biomaterials, vol. 24, pp. 3955-3968, 2003 [34]J. J. Kruzic, R. K. Nalla, J. H. Kinney and R. O. Ritchie, "Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration," Biomaterials, vol. 24, pp. 5209-5221, 2003 [35]D. Arola, J. Reid, M. E. Cox, D. Bajaj, N. Sundaram and E. Romberg, "Transition behavior in fatigue of human dentin: structure and anisotropy," Biomaterials, vol. 28, pp. 3867-3875, 2007 [36]D. D. Arola and R. K. Reprogel, "Tubule orientation and the fatigue strength of human dentin," Biomaterials, vol. 27, pp. 2131-2140, 2006 [37]E1820, "Standard test method for measurement of fracture toughness," ASTM, 2006 [38]K. J. Koester, J. W. Ager Ⅲ and R. O. Ritchie, "The effect of aging on crack-growth resistance and toughening mechanisms in human dentin," Biomaterials, vol. 29, pp. 1318-1328, 2008 [39]J. Ivancik and D. D. Arola, "The importance of microstructural variations on the fracture toughness of human dentin," Biomaterials, vol. 34, pp. 864-874, 2013 [40]R. M. Christensen, "A critical evaluation for a class of micromechanics models," J. Mech. Phys. Solids, vol. 38, pp. 379-404, 1990 [41]J. S. Rees and P. H. Jacobsen, "Elastic modulus of the periodontal ligament," Biomaterials, vol. 18, pp. 995-999, 1997 [42]D. H. Pashley, "Dentin: a dynamic substrate-a review," Scanning Microsc, vol. 3, pp. 161-176, 1989 [43]H. Bo and Z. Quanshui, "Effect of dentin tubules on the mechanical properties of dentin. Part Ⅰ: stress-strain relations and strength criterion," Acta. Mechanica Sinica, vol. 15, pp. 355-365, 1999 [44]H. Bo, Z. Quanshui, Z. Qing and W. Jiade, "Effect of dentin tubules to the mechanical properties of dentin. Part Ⅱ: experimental study," Acta. Mechanica Sinica, vol. 16, pp. 75-82, 2000 [45]J. Katz, "Hard tissue as angle composite material – i. bounds on the elastic behavior," J. Biomech., vol. 4, pp. 455-473, 1971 [46]B. Bar-On and H. O. Wagner, "Elastic modulus of hard tissue," J. Biomech., vol. 45, pp. 672-678, 2012 [47]Q. H. Qin and M. Swain, "A micro-mechanics model of dentin mechanical properties," Biomaterials, vol. 25, pp. 5081-5090, 2004 [48]D. Ziskind, M. Hasday, S. R. Cohen and H. D. Wagner, "Young’s modulus of peritubular and intertubular human dentin by nano-indentation tests," J. Struct. Biol., vol. 174, pp. 23-30, 2011 [49]Z. Hashin and B. W. Rosen, "The elastic moduli of fiber-reinforced materials," J. Appl. Mech., vol. 31, pp. 223-232, 1964 [50]J. Borcic, I. Anic, I. Smojver, A. Catic, I. Miletic and S. P. Ribaric, "3D finite element model and cervical lesion formation in normal occlusion and in malocclusion," J. Oral Rehabil., vol. 32, pp. 504-510, 2005 [51]G. Eskitascioglu, S. Belli and M. Kalkan, "Evaluation of two post core systems using two different methods(fracture strength test and a finite elemental stress analysis)," J. Endod., vol. 28, pp. 629-633, 2002 [52]X. G. Li, B. B. An and D. S. Zhang, "Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies," Appl. Math. Mech. Engl. Ed., vol. 36, pp. 1347-1358, 2015 [53]B. B. An, "Analysis of crack interacting with the composite microstructure of dentin," European Journal of Mechanics-A/Solid., vol. 66, pp. 287-295, 2017 [54]B. B. An, Y. Xu and D. S. Zhang, "Crack initiation and propagation in composite microstructure of dentin," International Journal of Solid and Structures., vol. 110-111, pp. 36-43, 2017 [55]A. Kishen and S. Vedantam, "Hydromechanics in dentine: Role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution," Dent. Mater., vol. 23, pp. 1296-1306, 2007 [56]A. P. Martini, R. B. Anchieta, E. P. Rocha, A. C. Jr. Freitas, E. O. Almeida, R. H. Sundfeld and M. A. Luersen, "Influence of voids in the hybrid layer based on self-etching adhesive systems: a 3-D FE analysis," J. Appl. Oral Sci., vol. 17, pp. 19-26, 2009 [57]R. B. Anchieta, E. P. Rocha, C. C. Ko, R. H. Sundfeld, M. Jr. Martin and C. M. Archangelo, "Localized mechanics of dentin self-etching adhesive systems," J. Appl. Oral Sci., vol. 15, pp. 321-326, 2007 [58]A. Misra, P. Spencer, O. Marangos, Y. Wang and J. L. Katz, "Micromechanical analysis of dentin/adhesive interface by the finite element method," J. Biomed. Mater. Res. B Applied Biomater., vol. 70, pp. 56-65, 2004 [59]N. J. McGuinness, A. N. Wilson, M. L. Jones and J. Middleton, "A stress analysis of the periodontal ligament under various orthodontic loadings," Eur. J. Orthod., vol. 13, pp. 231-242, 1991 [60]R. H. Sundfeld, T. A. Valentino, R. S. Alexandre, A. L. F. Briso and M. L. M. M. Sundefeld, "Hybrid layer thickness and resin tag length of a self-etching adhesive bonded to sound dentin," J. Dent., vol. 33, pp. 675-681, 2005 [61]A. O. Dourda, A. J. Moule and W. G. Young, "A morphometric analysis of the cross-sectional area of dentin occupied by dentinal tubules in human third molar teeth," Int. Endod. J., vol. 27, pp. 184-189, 1994 [62]G. Fosse, P. K. Saele and R. Eide, "Numerical density and distributional pattern od dentin tubules," Acta. Odontol. Scand., vol. 50, pp. 201-210, 1992 [63]L. Tronstad, "Ultrastructural observations on human coronal dentin," Scand. J. Dent. Res., vol. 81, pp. 101-111, 1973 [64]C. Xu, Y. Wong, "Chemical composition and structure of peritubular and intertubular human dentine visited," Arch. Oral Biol., vol. 57, pp. 383-391, 2012 [65]O. Hidaka, M. Iwasaki, M. Saito and T. Morimoto, "Influence of clentching intensity on bite force balance, occlusal contact area, and average bite pressure," J. Dent. Res., vol. 78, pp. 1336-1344, 1999 [66]S. T. Rasmussen and R. E. Patchin, "Fracture properties of human enamel and dentin in an aqueous environment," J. Dent. Res., vol. 63, pp. 1362-1368, 1984 [67]A. Nazari, D. Bajaj, D. Zhang, E. Romberg and D. Arola, "Aging and the reduction in fracture toughness of human dentin," Biomaterials, vol. 2, pp. 550-559, 2009 [68]D. Bajaj, N. Sundaram, A. Nazari and D. Arola, "Age, dehydration and fatigue crack growth in dentin," Biomaterials, vol. 27, pp. 2507-2517, 2006 [69]J. H. Kinney, R. K. Nana, J. A. Pople, T. M. Breunig and R. O. Ritchie, "Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties," Biomaterials, vol. 26, pp. 3363-3376, 2005 [70]R. G. Craig and F. A. Peyton, "Elastic and mechanical properties of human dentin," J. Dent. Res., vol. 37, pp. 710-718, 1958 [71]R. G. Craig, F. A. Peyton and D. W. Johnson, "Compressive properties of enamel, dental cements, and gold," J. Dent. Res., vol. 40, pp. 936-945, 1958 [72]G. Huang, H. Schilder and D. Nathanson, "Effects of moisture content and endodontic treatment on some mechanical properties of himan dentin," J. Endod., vol. 18, pp. 209-215, 1992 [73]R. K. Nalla, J. H. Kinney, A. P. Tomsia and R. O. Ritchie, "Role of alcohol in the fracture resistance of teeth," J. Dent. Res., vol. 85, pp. 1022-1026, 2006 [74]B. An and H. D. Wagner, "The effect of microcracking in the peritubular dentin on the fracture of dentin," J. Biomech., vol. 65, pp. 125-130, 2017
|