跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅堉瑋
研究生(外文):Yu-Wei Lou
論文名稱:管周牙本質厚度與填補小管材料對牙本質結構應力分佈之生物力學探討
論文名稱(外文):Biomechanical Investigation of the Peritubular Dentine widths and Tubule Filling Materials on the Dentinal Structure Stress Distribution
指導教授:林俊彬林俊彬引用關係陳文斌陳文斌引用關係
指導教授(外文):Chun-Pin LinWeng-Pin Chen
口試委員:姜昱至呂東武
口試委員(外文):Yu-Chih ChiangTung-Wu Lu
口試日期:2018-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:有限元素分析填補小管材料管間牙本質管周牙本質牙本質小管
外文關鍵詞:Finite Element AnalysisTubule Filling MaterialsIntertubular DentinPeritubular DentinDentinal Tubules
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
人類牙齒為一種含有有機和無機物質的多孔性生物複合結構,其中最獨特的微結構特徵為牙本質小管,主要可分為牙本質小管、管周牙本質與管間牙本質三個部分。在過去,許多學者利用多種顯微影像、力學試驗、理論分析以及有限元素分析,探討牙本質小管結構之形態學、楊氏模數、疲勞強度與斷裂韌性等機械性質,然而幾乎沒有研究量化管周牙本質對於整體牙本質的增強效應;而在牙科臨床上,齵齒清除或是根管治療會使天然牙本質與牙釉質成分減少,並產生接合之缺陷,造成牙齒機械強度下降而較容易斷裂,因此本研究的目的為探討在咬合力負載下,管周牙本質結構對整體牙本質應力與應變之影響,以及評估填補材料於牙本質小管中,是否可以提升牙本質的機械強度,降低斷裂之風險。
本研究參照過去牙本質形態學與機械性質之相關文獻,建立七組牙本質三維有限元素模型,藉以探討管周牙本質的厚度、不同楊氏模數的填補材料以及小管密度之影響;材料參數方面,給予各結構之楊氏模數與泊松比,並設定為均質等向性;負載與邊界條件方面,一端給予模型垂直和平行於小管方向之均佈力,另一端設定全拘束,負載大小則參考人類在60%咬合強度下,上顎第二臼齒之咬合壓力。分析結果可以分為兩部分;其一,管周牙本質結構的存在以及厚度的增加,使模型受力面積和平均楊氏模數增加,造成管周與管間牙本質之應力與應變下降,並且當負載垂直小管方向時,更能改善牙本質小管管壁邊緣處的應力集中現象,在力學意義上提升了整體牙本質的機械強度;其二,無論負載方向為何,填補小管都能使管周牙本質與管間牙本質的應力與應變下降,且下降趨勢隨著牙本質小管密度的增加而更加顯著,此外,填補材料之楊氏模數以等於或略低於管周牙本質,效果為最佳。
本研究可以作為未來更多填補牙本質小管相關研究之參考依據,包括建立更完整之牙本質模型、使用衝擊和疲勞負載或是更明確之填補材料特性等研究,期望有助於減少牙齒術後斷裂的風險,提升牙齒的生命週期。
The human tooth is a porous biocomposite structure containing organic and inorganic substances. The most unique microstructural features are dentinal tubules, which can be divided into three parts consisting of dentinal tubules(DTs), peritubular dentin(PTD) and intertubular dentin(ITD). In the past, even though several researchers employed a variety of methods including microscopic imagings, mechanical testings, theoretical analyses and finite element analyses to explore the morphology, Young’s modulus, fatigue strength, and fracture toughness of the dentinal tubules. However, there is no investigation on the reinforcement effect of the PTD to the overall dentin structure. In dental clinical practices, removal of caries or root canal treatment not only reduce the content of natural dentin and enamel but also cause joint defects, which may result in the decrease of mechanical strength of the teeth that makes it susceptible to fracture. Therefore, the objectives of this study were not merely to investigate the biomechanical effects of the PTD on the dentinal structure stress and strain distribution under occlusal loads, but also to evaluate whether the filling materials can improve the mechanical strength of the dentin and reduce the risk of fracture.
In this study, seven groups of 3D finite element models of dentin were established refering to the literatures on dentin morphology and mechanical properties and to explore the biomechanical effects of the thickness of PTD, the filling materials with different Young’s moduli, and the density of DTs. In terms of material parameters, the Young’s modulus and Poisson’s ratio of each structure were given and set to be homogeneous and isotropic. One side of the model was given a uniform force perpendicular or parallel to the DTs, and the other side was set to be fully constrained. Besides, the magnitude of load was determined by the occlusal pressure on the second molar tooth at 60% occlusal intensity as referred from the literatures.The analysis results were divided into two sections. First, the presence and the increase of PTD thickness could raise the contact area and the average Youngs modulus of the model, which give rise to the decrease in the stress and strain of the PTD and ITD. Moreover, it can ameliorate the stress concentration at the edge of the wall of the DTs when perpendicular loading was applied to the direction of DTs. Thus can improve the mechanical strength of the whole dentin on the aspect of mechanics. Secondly, DTs filling can reduce both the stress and strain of PTD and ITD no matter what the direction of load is. This descending trend becomes more obvious with the increase of DTs. In addition, the filling materials with the Young’s modulus equal to or slightly lower than the PTD may be an optimal choice.
This study can serve as a reference for further studies on the filling of DTs in the future, including establishing a more complete dentin model, using impact and fatigue loads, or more specific filling materials. It is expected to help reducing the risk of post-dental treatment fractures and improve the life cycle of the teeth.
摘要 i
ABSTRACT iii
致謝 vi
目錄 viii
表目錄 xi
圖目錄 xii
第1章 緒論 1
1.1 前言 1
1.2 研究背景與基礎理論 4
1.2.1 牙科生理學 4
1.2.2 敏感性牙齒之成因與目前治療方法 7
1.2.3 根管治療簡介 8
1.2.4 機械性質簡介 9
1.2.3.1 斷裂韌性之介紹 9
1.2.5 有限元素分析 11
1.3 文獻回顧 12
1.3.1 牙本質小管結構之形態學 12
1.3.2 利用力學測試探討牙本質機械性質之相關研究 14
1.3.2.1 牙本質之楊氏模數與硬度 14
1.3.2.2 牙本質之拉伸與壓縮強度 18
1.3.2.3 牙本質之斷裂韌性 19
1.3.3 利用理論模型探討牙本質之機械性質 23
1.3.4 利用有限元素分析探討牙本質之機械性質 26
1.4 研究目的 31
第2章 材料與方法 32
2.1 研究流程 32
2.2 牙本質有限元素分析 34
2.2.1 牙本質小管結構與填補材料之實體模型 34
2.2.1.1 牙本質小管之數量與管徑大小 34
2.2.1.2 管周牙本質之管壁厚度 35
2.2.1.3 牙本質小管之密度與排列方式 35
2.2.1.4 牙本質模型之外形與尺寸 36
2.2.1.5 填補材料之外形與尺寸 37
2.2.2 牙本質小管結構與填補材料之有限元素模型 38
2.2.2.1 有限元素模型之參數設定 38
2.2.2.2 邊界與負載條件設定 39
2.2.2.4 牙本質模型網格鋪設 43
第3章 結果 45
3.1 牙本質小管厚度對牙本質盟麥斯應力之影響 45
3.1.1 承受平行於牙本質小管方向之負載 45
3.1.2 承受垂直於牙本質小管方向之負載 47
3.2 牙本質小管填補不同材料對牙本質應力之影響 48
3.2.1 承受平行於牙本質小管方向之負載 48
3.2.2 承受垂直於牙本質小管方向之負載 50
3.3 牙本質小管密度對牙本質盟麥斯應力之影響 53
3.3.1 承受平行於牙本質小管方向之負載 53
3.3.2 承受垂直於牙本質小管方向之負載 55
第4章 討論 57
4.1 管周牙本質厚度對牙本質盟麥斯應力之影響 57
4.2 牙本質小管填補不同材料對牙本質應力與應變之影響 60
4.3 牙本質小管密度對牙本質盟麥斯應力與應變之影響 65
4.4 研究限制 68
第5章 結論 69
參考文獻 70
[1]R. Wang, L. Niu, Q. Li, Q. Liu, and H. Zuo, "The peritubular reinforcement effect of porous dentine microstructure," PloS. ONE, vol. 12, 2017
[2]G. L. Giudice, G. Cutroneo, A. Centofanti, A. Artemisia, E. Bramanti, A. Militi, G. Rizzo, A. Favaloro, A. Irrera, R. O. Giudice, and M. Cicciù, "Dentin morphology of root canal surface: a quantitative evaluation based on a scanning electronic microscopy study," BioMed. Research International, 2015
[3]W. Grayson, Jr. Marshall, S.J. Marshall, J.H. Kinney and M. Balooch, "The dentin substrate: structure and properties related to bonding," J. Dent., vol. 25, pp. 441-458, 1997
[4]R. M. Carvalho, A. O. Fernandes, R. Villanueva, L. Wang, and D. H. Pashley, "Tensile strength of human dentin as a function of tubule orientation and density," J. Adhes. Dent., vol. 3, 2001
[5]R. Garberoglio and M. Brӓnnstrӧm, "Scanning electron microscopic investigation of human dentinal tubules," Arch. Oral Biol., vol. 21, pp. 355-362, 1976
[6]B. Sӧgaard-Pedersen, H. Boye and M. E. Matthiessen, "Scanning electron microscope observations on collagen fibers in human dentin and pulp," Scand. J. Dent. Res., vol. 98, pp. 89-95, 1990
[7]S. Habelitz, B. J. Rodriguez, S. J. Marshall, G. W. Marshall, S. V. Kalinin and A. Gruverman, "Peritubular dentin lacks piezoelectricity," J. Dent. Res., vol. 86, pp. 908-911, 2007
[8]S. Weiner, A. Veis, E. Beniash, T. Arad, J. W. Dillon, B. Sabsay and F. Siddiqui, "Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth," J. Struct. Biol., vol. 126, pp. 27-41, 1999
[9]A. Boyde and K. S. Lester, "An electron microscope study of fractured dentinal surfaces," Calcif. Tissue. Res., vol. 1, pp. 122-136, 1967
[10]M. Toparli and N. S. Hohsal, "Hardness and yield strength of dentin from simulated nano-indentation tests," Comput. Methods Programs Biomed., vol 77, pp. 253-257, 2005
[11]S. Inoue, Patricia N. R. Pereira, C. Kawamoto, M. Nakajima, K. Koshiro, J. Tagami, R. M. Carvalho, D. H. Pashley, and H. Sano, "Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin," Dent. Mater. J., vol. 22, pp. 39-47, 2003
[12]N. Iwamoto and N. D. Ruse, "Fracture toughness of human dentin," J. Biomed. Mater. Res. A., vol. 66, pp. 507-512, 2003
[13]D. D. Arola and R. K. Reproqel, "Tubule orientation and the fatigue strength of human dentin," Biomaterials, vol. 27, pp. 2131-3140, 2006
[14]J. H. Kinney, M. Baloocha, G. W. Marshallb, and S. J. Marshallb, "A micromechanics model of the elastic properties of human dentin," Archs. Oral Biol., vol. 44, pp. 813-822, 1999
[15]V. Lertchirakarn, J. E. Palamara, and H. H. Messer, "Anisotropy of tensile strength of root dentin," J. Dent. Res., vol. 80, pp. 453-456, 2001
[16]R. Jeanneret, C. Arson, and E. Vennat, "Homogenization of dentin elastic properties based on microstructure characterization, statistical back-analysis and FEM simulation," Poromechanics Ⅵ., 2017
[17]E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, "The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study," J. Dent., vol. 28, pp. 589-594, 2000
[18]J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So, and J. D. Maynard, "Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin," J. Biomech., vol. 37, pp. 437-441, 2004
[19]M. Ferrari, F. Mannocci, A. Vichi, M. C.Caqidiaco and A. Mjӧr, "Bonding to root canal:structure characteristics of the substrate," Am. J. Dent., vol. 13, pp. 255-260, 2000
[20]G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif and M. Balooch, "Evaluation of a new modulus mapping technique to investigate microstructure features of human teeth," J. Biomech., vol. 37, pp. 1223-1232, 2004
[21]G. W. Marshall, "Dentin: microstructure and characterization," Quintessence Int., vol. 24, pp. 606-617, 1993
[22]C. Montoya, D. Arola and E. A. Ossa, "Importance of tubule density to the fracture toughness of dentin," Arch. Oral Biol., vol. 67, pp. 9-14, 2016
[23]B. Huo, "An inhomogeneous and anisotropic constitutive model of human dentin," J. Biomech., vol. 38, pp. 587-594, 2005
[24]J. H. Kinney, M. Balooch, S. J. Marshall, G. W. Marshall and T. P. Weihs, "Hardness and Young’s modulus of human peritubular and intertubular dentine," Arch. Oral Biol., vol. 41, pp. 9-13, 1996
[25]L. Angker, M. V. Swain and N. Kilpatrick, "Characterising the micro-mechanical behavior of the carious dentine of primary teeth using nano-indentation," J. Biomech., vol. 38, pp. 1535-1542, 2005
[26]Y. R. Zhang, W. Du, X. D. Zhou and H. Y. Yu, "Review of research on the mechanical properties of the human tooth," Int. J. Oral Sci., vol. 6, pp. 61-69, 2014
[27]D. Pashley, A. Okabe and P. Parham, "The relationship between dentin microhardness and tubule density," Endod. Dent. Traumatol., vol. 1, pp. 176-179, 1985
[28]J. H. Kinney, S. J. Marshall and G. W. Marshall, "The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature," Crit. Rev. Oral Biol Med., vol. 14, pp. 13-29, 2003
[29]R. G. Craig and F. A. Peyton, "Elastic and mechanical properties of human dentin," J. Dent. Res., vol. 37, pp. 710-718, 1958
[30]R. G. Craig, F. A. Peyton and D. E. Johnson, "Compression properties of enamel, dental cements and gold," J. Endod., vol. 18, pp. 209-215, 1992
[31]T. G. Huang, H. Schilder and D. Nathanson, "Effects of moisture content and endodontic treatment on some mechanical properties of human dentin," J. Dent. Res., vol. 40, pp. 936-945, 1960
[32]N. Iwamoto and N. D. Ruse, "Fracture toughness of human dentin," J. Biomed. Mater. Res. A., vol. 66, pp. 507-512, 2003
[33]R. K. Nalla, J. H. Kinney and R. O. Ritchie, "Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms," Biomaterials, vol. 24, pp. 3955-3968, 2003
[34]J. J. Kruzic, R. K. Nalla, J. H. Kinney and R. O. Ritchie, "Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration," Biomaterials, vol. 24, pp. 5209-5221, 2003
[35]D. Arola, J. Reid, M. E. Cox, D. Bajaj, N. Sundaram and E. Romberg, "Transition behavior in fatigue of human dentin: structure and anisotropy," Biomaterials, vol. 28, pp. 3867-3875, 2007
[36]D. D. Arola and R. K. Reprogel, "Tubule orientation and the fatigue strength of human dentin," Biomaterials, vol. 27, pp. 2131-2140, 2006
[37]E1820, "Standard test method for measurement of fracture toughness," ASTM, 2006
[38]K. J. Koester, J. W. Ager Ⅲ and R. O. Ritchie, "The effect of aging on crack-growth resistance and toughening mechanisms in human dentin," Biomaterials, vol. 29, pp. 1318-1328, 2008
[39]J. Ivancik and D. D. Arola, "The importance of microstructural variations on the fracture toughness of human dentin," Biomaterials, vol. 34, pp. 864-874, 2013
[40]R. M. Christensen, "A critical evaluation for a class of micromechanics models," J. Mech. Phys. Solids, vol. 38, pp. 379-404, 1990
[41]J. S. Rees and P. H. Jacobsen, "Elastic modulus of the periodontal ligament," Biomaterials, vol. 18, pp. 995-999, 1997
[42]D. H. Pashley, "Dentin: a dynamic substrate-a review," Scanning Microsc, vol. 3, pp. 161-176, 1989
[43]H. Bo and Z. Quanshui, "Effect of dentin tubules on the mechanical properties of dentin. Part Ⅰ: stress-strain relations and strength criterion," Acta. Mechanica Sinica, vol. 15, pp. 355-365, 1999
[44]H. Bo, Z. Quanshui, Z. Qing and W. Jiade, "Effect of dentin tubules to the mechanical properties of dentin. Part Ⅱ: experimental study," Acta. Mechanica Sinica, vol. 16, pp. 75-82, 2000
[45]J. Katz, "Hard tissue as angle composite material – i. bounds on the elastic behavior," J. Biomech., vol. 4, pp. 455-473, 1971
[46]B. Bar-On and H. O. Wagner, "Elastic modulus of hard tissue," J. Biomech., vol. 45, pp. 672-678, 2012
[47]Q. H. Qin and M. Swain, "A micro-mechanics model of dentin mechanical properties," Biomaterials, vol. 25, pp. 5081-5090, 2004
[48]D. Ziskind, M. Hasday, S. R. Cohen and H. D. Wagner, "Young’s modulus of peritubular and intertubular human dentin by nano-indentation tests," J. Struct. Biol., vol. 174, pp. 23-30, 2011
[49]Z. Hashin and B. W. Rosen, "The elastic moduli of fiber-reinforced materials," J. Appl. Mech., vol. 31, pp. 223-232, 1964
[50]J. Borcic, I. Anic, I. Smojver, A. Catic, I. Miletic and S. P. Ribaric, "3D finite element model and cervical lesion formation in normal occlusion and in malocclusion," J. Oral Rehabil., vol. 32, pp. 504-510, 2005
[51]G. Eskitascioglu, S. Belli and M. Kalkan, "Evaluation of two post core systems using two different methods(fracture strength test and a finite elemental stress analysis)," J. Endod., vol. 28, pp. 629-633, 2002
[52]X. G. Li, B. B. An and D. S. Zhang, "Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies," Appl. Math. Mech. Engl. Ed., vol. 36, pp. 1347-1358, 2015
[53]B. B. An, "Analysis of crack interacting with the composite microstructure of dentin," European Journal of Mechanics-A/Solid., vol. 66, pp. 287-295, 2017
[54]B. B. An, Y. Xu and D. S. Zhang, "Crack initiation and propagation in composite microstructure of dentin," International Journal of Solid and Structures., vol. 110-111, pp. 36-43, 2017
[55]A. Kishen and S. Vedantam, "Hydromechanics in dentine: Role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution," Dent. Mater., vol. 23, pp. 1296-1306, 2007
[56]A. P. Martini, R. B. Anchieta, E. P. Rocha, A. C. Jr. Freitas, E. O. Almeida, R. H. Sundfeld and M. A. Luersen, "Influence of voids in the hybrid layer based on self-etching adhesive systems: a 3-D FE analysis," J. Appl. Oral Sci., vol. 17, pp. 19-26, 2009
[57]R. B. Anchieta, E. P. Rocha, C. C. Ko, R. H. Sundfeld, M. Jr. Martin and C. M. Archangelo, "Localized mechanics of dentin self-etching adhesive systems," J. Appl. Oral Sci., vol. 15, pp. 321-326, 2007
[58]A. Misra, P. Spencer, O. Marangos, Y. Wang and J. L. Katz, "Micromechanical analysis of dentin/adhesive interface by the finite element method," J. Biomed. Mater. Res. B Applied Biomater., vol. 70, pp. 56-65, 2004
[59]N. J. McGuinness, A. N. Wilson, M. L. Jones and J. Middleton, "A stress analysis of the periodontal ligament under various orthodontic loadings," Eur. J. Orthod., vol. 13, pp. 231-242, 1991
[60]R. H. Sundfeld, T. A. Valentino, R. S. Alexandre, A. L. F. Briso and M. L. M. M. Sundefeld, "Hybrid layer thickness and resin tag length of a self-etching adhesive bonded to sound dentin," J. Dent., vol. 33, pp. 675-681, 2005
[61]A. O. Dourda, A. J. Moule and W. G. Young, "A morphometric analysis of the cross-sectional area of dentin occupied by dentinal tubules in human third molar teeth," Int. Endod. J., vol. 27, pp. 184-189, 1994
[62]G. Fosse, P. K. Saele and R. Eide, "Numerical density and distributional pattern od dentin tubules," Acta. Odontol. Scand., vol. 50, pp. 201-210, 1992
[63]L. Tronstad, "Ultrastructural observations on human coronal dentin," Scand. J. Dent. Res., vol. 81, pp. 101-111, 1973
[64]C. Xu, Y. Wong, "Chemical composition and structure of peritubular and intertubular human dentine visited," Arch. Oral Biol., vol. 57, pp. 383-391, 2012
[65]O. Hidaka, M. Iwasaki, M. Saito and T. Morimoto, "Influence of clentching intensity on bite force balance, occlusal contact area, and average bite pressure," J. Dent. Res., vol. 78, pp. 1336-1344, 1999
[66]S. T. Rasmussen and R. E. Patchin, "Fracture properties of human enamel and dentin in an aqueous environment," J. Dent. Res., vol. 63, pp. 1362-1368, 1984
[67]A. Nazari, D. Bajaj, D. Zhang, E. Romberg and D. Arola, "Aging and the reduction in fracture toughness of human dentin," Biomaterials, vol. 2, pp. 550-559, 2009
[68]D. Bajaj, N. Sundaram, A. Nazari and D. Arola, "Age, dehydration and fatigue crack growth in dentin," Biomaterials, vol. 27, pp. 2507-2517, 2006
[69]J. H. Kinney, R. K. Nana, J. A. Pople, T. M. Breunig and R. O. Ritchie, "Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties," Biomaterials, vol. 26, pp. 3363-3376, 2005
[70]R. G. Craig and F. A. Peyton, "Elastic and mechanical properties of human dentin," J. Dent. Res., vol. 37, pp. 710-718, 1958
[71]R. G. Craig, F. A. Peyton and D. W. Johnson, "Compressive properties of enamel, dental cements, and gold," J. Dent. Res., vol. 40, pp. 936-945, 1958
[72]G. Huang, H. Schilder and D. Nathanson, "Effects of moisture content and endodontic treatment on some mechanical properties of himan dentin," J. Endod., vol. 18, pp. 209-215, 1992
[73]R. K. Nalla, J. H. Kinney, A. P. Tomsia and R. O. Ritchie, "Role of alcohol in the fracture resistance of teeth," J. Dent. Res., vol. 85, pp. 1022-1026, 2006
[74]B. An and H. D. Wagner, "The effect of microcracking in the peritubular dentin on the fracture of dentin," J. Biomech., vol. 65, pp. 125-130, 2017
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top