|
[1]廖偉承,利用活性網版印刷碳電極與碳材料結合奈米粒子的修飾電極應用於測定生物分子。 [2]https://scitechvista.nat.gov.tw/c/sWrY.htm. [3]邱馨卉,製備奈米碳材與奈米金屬粒子複合薄膜修飾電極分別偵測過氧化氫、亞硝酸鹽和葡萄糖。 [4]廖偉承,利用活性網版印刷碳電極與碳材料結合奈米粒子的修飾電極應用於測定生物分子。 [5]蘇宏碁,東華大學化學系化學生物感測器講義。 [6]http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-1.1%20Electrochemical%20System-%E4%B8%AD%E6%96%87.pdf [7]董紹俊,車廣禮,謝遠武,化學修飾電極,台灣:科學出版社,2003。 [8]蔡適鴻,利用電沉積金屬和導電高分子修飾石墨烯與奈米碳管複合電極及其電化學的分析與應用,國立臺北科技大學,2015。 [9]王儀婷,還原石墨烯氧化物和鉬酸銀修飾電極的製備極其應用於電化學感測器、生物感測器和光催化反應。 [10]https://zh.wikipedia.org/wiki/%E4%B8%89%E6%B0%A7%E5%8C%96%E9%92%A8 [11]https://translate.google.com.tw/translate?hl=zh-TW&sl=en&u=https://en.wikipedia.org/wiki/Tungsten_trioxide&prev=search [12]https://en.wikipedia.org/wiki/Monoclinic_crystal_system [13]https://zh.wikipedia.org/wiki/%E7%82%AD%E9%BB%91 [14]林觀宇,生物與奈米複合材料的製備及應用於電化學感測器的研究 [15]https://www.google.com.tw/search?biw=1745&bih=885&tbm=isch&sa=1&ei=AYWmWrqBBsSX0gSlq7d4&q=Poly-L-lysine&oq=Poly-L-lysine&gs_l=psy-ab.3..0i19k1l2j0i30i19k1.11219.11219.0.13598.1.1.0.0.0.0.58.58.1.1.0....0...1c.1.64.psy-ab..0.1.57....0._UXG2ZGlbGE#imgrc=RVUXwXn7dSJfTM: [16]http://www.health123.tw/%E9%9B%A2%E8%83%BA%E9%85%B8-l-lysine/ [17]林觀宇,生物與奈米複合材料的製備及應用於電化學感測器的研究 [18]https://translate.google.com.tw/translate?hl=zh-TW&sl=zh-CN&u=https://bkso.baidu.com/item/%25E7%2582%25AD%25E6%25B0%2594%25E5%2587%259D%25E8%2583%25B6&prev=search [19]https://zh.wikipedia.org/wiki/%E5%BC%82%E7%83%9F%E8%82%BC [20]https://zh.wikipedia.org/wiki/%E5%BC%82%E7%83%9F%E8%82%BC [21]https://translate.google.com.tw/translate?hl=zh-TW&sl=zh-CN&u=https://zh.wikipedia.org/zh-tw/%25E5%25A3%25B3%25E8%2581%259A%25E7%25B3%2596&prev=search [22]https://translate.google.com.tw/translate?hl=zh-TW&sl=zh-CN&u=https://zh.wikipedia.org/zh-tw/%25E5%25A3%25B3%25E8%2581%259A%25E7%25B3%2596&prev=search [23]http://www.twword.com/wiki/%E6%AE%BC%E8%81%9A%E7%B3%96#3 [24]廖偉承,利用活性網版印刷碳電極與碳材料結合奈米粒子的修飾電極應用於測定生物分子。 [25]林觀宇,生物與奈米複合材料的製備及應用於電化學感測器的研究 [26]http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-1.2%20Electrochemical%20Method-%E4%B8%AD%E6%96%87.pdf [27]廖偉承,利用活性網版印刷碳電極與碳材料結合奈米粒子的修飾電極應用於測定生物分子。 [28]https://zh.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E4%BC%8F%E5%AE%89%E6%B3%95 [29]孫鳳霞主編,儀器分析,北京:化學工業出版社,2004.3,第352-354頁 [30]http://ce.sysu.edu.cn/Echemi/acbx/Content/part2/chapter13/content_b_13_05.html 分析化學-13.5極譜和伏安分析的發展。 [31]https://www.google.com.tw/search?q=bode%E5%9C%96&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjJud7Szu3ZAhUNPrwKHUX2AE4Q_AUICigB&biw=1745&bih=885#imgrc=_ [32]https://www.google.com.tw/search?q=%E4%BA%A4%E6%B5%81%E9%98%BB%E6%8A%97%E5%9C%96&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiSnoKZz-3ZAhUBxLwKHa3NBikQ_AUICigB&biw=1745&bih=885#imgrc=TsHpDNfiTFM9fM: [33]https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C [34]https://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf [35]https://www.google.com.tw/search?q=Scanning+Electron+Microscope&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiywNSL3u3ZAhWLppQKHWpoCQ8Q_AUICigB&biw=1745&bih=885#imgrc=Hy4YdEd5zQqMKM: [36]https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C#/media/File:Misc_pollen.jpg [37]http://www.eaglabs.com.tw/tem-stem.html [38]https://www.google.com.tw/search?q=TEM&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjZ1fT8hu7ZAhUMUbwKHSBiDVYQ_AUICigB&biw=1745&bih=885#imgrc=_ [39]https://translate.google.com.tw/translate?hl=zh-TW&sl=zh-CN&u=https://zh.wikipedia.org/zh-tw/%25E9%2580%258F%25E5%25B0%2584%25E7%2594%25B5%25E5%25AD%2590%25E6%2598%25BE%25E5%25BE%25AE%25E9%2595%259C&prev=search [40]http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm [41]http://www.chem.ucla.edu/~bacher/UV-vis/uv_vis_tetracyclone.html.html [42]http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/FTIR.html [43]孫鳳霞主編,儀器分析,北京:化學工業出版社,2004.03,第68-70頁。 [44]柯以侃主編,儀器分析,新文京開發出版有限公司,2002.01,第188-190頁。 [45]林觀宇,生物與奈米複合材料的製備及應用於電化學感測器的研究 [46]http://www.rightek.com.tw/product_detail.php?id=167 [47]file:///C:/Users/jack/Downloads/%E6%8B%89%E6%9B%BC.pdf [48]https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8 [49]https://zh.wikipedia.org/wiki/%E7%86%B1%E9%87%8D%E5%88%86%E6%9E%90 [50] chem.ncut.edu.tw/ezfiles/47/1047/img/1012/857383363.pdf [51]https://www.google.com.tw/search?q=tga+%E5%8E%9F%E7%90%86&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi50ZDu-_XZAhXFsJQKHd3HAL0Q_AUICigB&biw=1745&bih=885#imgrc=e9hpU5lgmdQTPM: [52]https://zh.wikipedia.org/wiki/%E8%8A%A6%E4%B8%81#/media/File:Rutin_structure.svg [53]K. H. Kim, K. W. Lee, D. Y. Kim, H. H. Park, I. B. Kwon, H. J. Lee, Bioresour. Technol., 2005, 96, 1709-1712. [54]H. Hosseinzadeh, M. N. Asl, J. Endocrinol Invest., 2014, 37,783-788. [55]Y. Miao, Z. Zhang, Y. Gong, Q. Zhang, G. Yan, Biosens. Bioelectron., 2014, 52, 271-276. [56]I. M. Apetrei, C. Apetrei, Measurement., 2018, 114, 37-43. [57]W. Sun, L. Dong, Y. Lu, Y. Deng, J. Yu, X. Sun, Q. Zhu, Sens. Actuators, B.,2014, 199, 36-41. [58]J. Tao, Q. Hu, J. Yang, R. Li, X. Li, C. Lu, C. Chen, L. Wang, R. Shattock , K. Ben, Antiviral Res., 2007, 75, 227-233. [59]B. Hu, F. Dai, Z. Fan, G. Ma, Q. Tang, X. Zhang, Adv. Mater., 2015, 27, 5499-5505. [60]R. Guo, P. Wei, Microchim. Acta, 2008, 161, 233–239. [61]J. Wang, B. Yang, S. Li, B. Yan, H. Xu, K. Zhang, Y. Shi, C. Zhai, Y. Du, J. Colloid Interface Sci., 2017, 506, 329-337. [62]A. Gong, W. Ping, J. Wang, X. Zhu, Spectrochim.Acta, Part A Spectrochimica., 2014, 122, 331-336. [63]T. Z. Attia, Spectrochim. Acta, Part A., 2016, 169, 82-86. [64]Q. Wang, F. Ding, H. Li, P. He, Y. Fang, J. Pharm. Biomed. Anal., 2003, 30, 1507-1514. [65]S. Li, L. Zhang, L. Chen, Y. Zhong, Y. Ni, Anal. Methods, 2016, 8, 4056-4063. [66] X. Q. Lin, J. B. He , Z. G. Zha, Sens. Actuators, B., 2006, 119, 608-614. [67]I. M. Apetrei, C. Apetrei, IEEE Sens. J., 2015, 15, 3094–3101. [68]Y. Li, D. Chen, R. A. Caruso, J. Mater. Chem. C., 2016, 4, 10500-10508. [69]C. G. Kuo, C. Y. Chou, Y. C. Tung, J. H. Chen, J. Mar. Sci. Technol., 2012, 20, 365-368.. [70]B. Zhang, J. Liu, S. Guan, Y. Wan, Y. Zhang, R. Chen, J. Alloys Compd., 2007, 439, 55-58. [71]J. H. Ha, P. Muralidharan, D. K. Kim, J. Alloys Compd., 2009, 475, 446-451. [72] S. Shukla, A. Umar, S. Chaudhary, G. R. Chaudhary, S. K. Kansal, S. K. Mehta, Sens. Actuators, B., 2016, 230, 571-580. [73]F. Amano, M. Tian, B. Ohtani, A. Chen, J. Solid State Electrochem., 2012, 16, 1965-1973. [74]D. Meng, T. Yamazaki, Y. Shen, Z. Liu, T. Kikuta, Appl. Surf. Sci., 2009, 256, 1050-1053. [75]W. Wu, Q. Yu, J. Lian, J. Bao, Z. Liu, S. S. Pei, J. Cryst. Growth., 2010, 312, 3147-3150. [76]B. Šljukić, C. E. Banks, A. Crossley, R. G. Compton, Electroanalysis, 2006, 18, 1757-1762. [77]S. Sakthinathan, S. Kubendhiran, S. M. Chen, C. Karuppiah, T. W. Chiu, J. Phys. Chem. C., 2017, 121, 14096-14107. [78]B. Thirumalraj, S. Kubendhiran, S. M. Chen, K. Y. Lin, J. Colloid Interface Sci., 2017, 498, 144-152. [79]N. Karikalan, S. Kubendhiran, S. M. Chen, P. Sundaresan, R. Karthik, J. Catal., 2017, 356, 43-52. [80]J. Panchompoo, L. Aldous, C. Downing, A. Crossley, R. G. Compton, Electroanalysis, 2011, 23, 1568-1578. [81]J. Panchompoo, L. Aldous, R. G. Compton, New J. Chem., 2010, 34, 2643-2653. [82]P. J. Kulesza, L. R. Faulkner, J. Electroanal. Chem., 1988, 248, 305–320. [83]J. Zhang, Y. Guo, Y. Xiong, D. Zhou, S. Dong, J. Catal., 2017, 356, 1-13. [84] W. Zhu, F. Sun, R. Goei, Y. Zhou, Appl. Catal., B., 2017, 207, 93-102. [85]S. M. Lyth, W. Ma, J. Liu, T. Daio, K. Sasaki, A. Takahara, B. Ameduri, Nanoscale., 2015, 7, 16087-16093. [86] J. Y. Luo, S. Z. Deng, Y. T. Tao, F. L. Zhao, L. F. Zhu, L. Gong, J. Chen, N. S. Xu, J. Phys. Chem. C, 2009, 113, 15877-15881. [87]F. Liu, X. Chen, Q. Xia, L. Tian, X. Chen, RSC Adv., 2015, 5, 77423-77428. [88]S. Ratha, C. S. Rout, ACS Appl. Mater. Interfaces., 2013, 5, 11427-11433. [89]R. Xing, H. Yang, S. Li, J. Yang, X. Zhao, Q. Wang, S. Liu, X. Liu, J. Solid State Electrochem., 2017, 21, 1219-1228. [90]M. Liu, J. Deng, Q. Chen, Y. Huang, L. Wang, Y. Zhao, Y. Zhang, H. Li, S. Yao, Biosensors Bioelectron., 2013, 41, 275–281 [91]H. Yang, B. Li, R. Cui, R. Xing, S. Liu, J. Nanopart. Res., 2017, 19, 354. [92]K. J. Huang, L. Wang, Y. J. Liu, T. Gan, Y. M. Liu, L. L. Wang, Y. Fan, Electrochim. Acta., 2013, 107, 379-387. [93]P. Pang, H. Li, Y. Liu, Y. Zhang, L. Feng, H. Wang, Z. Wu, W. Yang, Anal. Methods., 2015, 7, 95–98. [94]S. Cui, L. Li, Y. Ding, J. Zhang, H. Yang, Y. Wang, Talanta, 2017, 164, 291-299. [95]T. Zhan, X. Sun, X. Wang, W. Sun, W. Hou, Talanta, 2010, 82, 1853-1857. [96] Y. Wu, C. Hu, M. Huang, N. Song, W. Hu, Ionics, 2015, 21, 1427-1434. [97]L. Yan, X. Niu, W. Wang, X. Li, X. Sun, C. Zheng, J. Wang, W. Sun, Int. J. Electrochem. Sci., 2016, 11, 1738-1750. [98]X. Liu, L. Li, X. Zhao, X. Lu, Colloids Surf., B., 2010, 81, 344-349. [99]B. Zeng, S. Wei, F. Xiao, F. Zhao, Sens. Actuators, B., 2006, 115, 240-246. [100]Y. Wei, G. Wang, M. Li, C. Wang, B. Fang, Microchim. Acta., 2007, 158, 269-274. [101]https://zh.wikipedia.org/wiki/%E9%9B%A2%E8%83%BA%E9%85%B8 [102]Kang S, Oh J, Han MS. A colorimetric sensor for hydrogen sulfide detection using direct inhibition of active site in G-quadruplex DNAzyme. Dyes and Pigments 2017; 139:187–192. [103]Hydrogen sulfide (environmental health criteria, no. 19). Geneva: World Health Organization, 1981. [104]Casella IG, Guascito MR, Desimoni E. Sulfide measurements by flow injection analysis and ion chromatography with electrochemical detection. Anal. Chim. Acta 2000; 409:27–34. [105]Stein A, Bailey SM, Redox biology of hydrogen sulfide: Implications for physiology, pathophysiology, and pharmacology. Redox Biol. 2013; 1:32–39. [106]Ma F, Sun M, Zhang K, Yu H, Wang Z, Wang S. A turn-on fluorescent probe for selective and sensitive detection of hydrogen sulfide. Anal. Chim. Acta 2015; 879:104–110. [107]Gosselin RE, Smith RP, Hodge HC, Braddock J. Clinical toxicology of commercial products. Fifth ed. Baltimore, MD: Williams and Wilkins. 1984; III: 198–202. [108]Vu DL, Červenka L, Determination of sulfide by hematoxylin multiwalled carbon nanotubes modified carbon paste electrode. Electroanalysis 2013; 25:1967–1973. [109]Giovanelli D, Lawrence NS, Jiang L, Jones TGJ, Compton RG. Amperometric determination of sulfide at a pre-oxidised nickel electrode in acidic media. Analyst 2003; 128:173–177. [110]Knoery JR, Cutter GA. Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal. Chem. 1993; 65:976–982. [111]Pandya A, Joshi KV, Modi NR, Menon SK. Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe. Sens. Actuators, B 2012; 168:54–61. [112]Silva MSP, Galhardo CX, Masini JC, Application of sequential injection-monosegmented flow analysis (SI-MSFA) to spectrophotometric determination of sulfide in simulated waters samples. Talanta 2003; 60:45–52. [113]Bailey TS, Pluth MD. Chemiluminescent detection of enzymatically produced hydrogen sulfide: Substrate hydrogen bonding influences selectivity for H2S over biological thiols. J. Am. Chem. Soc. 2013; 135:16697–16704. [114]Giuriati C, Cavalli S, Gorni A, Badocco D, Pastore P. Ion chromatographic determination of sulfide and cyanide in real matrices by using pulsed amperometric detection on a silver electrode. J Chromatogr. A 2004; 1023:105–112. [115]Thakur B, Bernalte E, Smith JP, Foster CW, Linton PE, Sawanta SN, Banks CE. Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide. Analyst 2016; 141:1233–1238. [116]Ardelean M, Manea F, Vaszilcsin N, Pode R. Electrochemical detection of sulphide in water/ seawater using nanostructured carbon–epoxy composite electrodes. Anal. Methods 2014; 6:4775–4782. [117]Wang L, Xu L, Cyclic voltammetric determination of free and total sulfite in muscle foods using an acetylferrocene−carbon black−poly(vinyl butyral) modified glassy carbon electrode. J. Agric. Food Chem. 2014; 62:10248−10253. [118]Yerga DM, Rama EC, García AC. Electrochemical study and determination of electroactive species with screen-printed electrodes. J. Chem. Educ. 2016: 93:1270−1276. [119]Wang J. Modified electrodes for electrochemical sensors. Electroanalysis 1991; 3:255–259. [120]Cumba LR, Smith JP, Brownson DAC, Iniesta J, J. P. Metters JP, D. R. do Carmo, C. E. Banks, Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes. Analyst 2015; 140:1543–1550. [121]Pereira FC, Fogg AC, Zanoni MVB. Regeneration of poly-L-lysine modified carbon electrodes in the accumulation and cathodic stripping voltammetric determination of the cromoglycate anion. Talanta 2003; 60:1023–1032. [122]Lawrence NS, Thompson M, Prado C, Jiang L, Jones TGJ, Compton RG. Amperometric detection of sulfide at a boron doped diamond electrode: The electrocatalytic reaction of sulfide with ferricyanide in aqueous solution. Electroanalysis 2002; 14:499–504. [123]Cesarino I, Moraes FC, Lanza MRV, Machado SAS. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem. 2012; 135:873–879. [124]Palanisamy S, Thirumalraj B, Chen SM, Wang YT, Velusamy V, Ramaraj SK. A facile electrochemical preparation of reduced graphene oxide@polydopamine composite: A novel electrochemical sensing platform for amperometric detection of chlorpromazine. Sci. Rep. 2016; 6:33599–33608. [125]Guo Z, Huang G, Li J, Wang Z, Xu X, Graphene oxide-Ag/poly-L-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. J. Electroanal. Chem. 2015; 759:113–121. [126]Thirumalraj B, Kubendhiran S, Chen SM, Lin KY. Highly sensitive electrochemical detection of palmatine using a biocompatible multiwalled carbon nanotube/poly-L-lysine composite. J. Colloid Interface Sci. 2017; 498:144–152. [127]Vilian ATE, Chen SM, Kwak CH, Hwang SK, Huh YS, Han YK. Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2. Sens. Actuators, B 2016; 224:607–617. [128]He Z, Zang S, Liu Y, He Y, Lei H. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron. 2015; 73:85–92. [129]Vilian ATE, Chen SM, Lou BS. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-lysine) biocomposite for the detection of H2O2 and iodate. Biosens. Bioelectron. 2014; 61:639–647. [130]Ling X, Wei Y, Zou L, Xu S. Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-l-lysine. Colloids Surf. A 2014; 443:19–26. [131]Valentini F, Fernàndez LG, Tamburri E, Palleschi G. Single walled carbon nanotubes/polypyrrole–GOx composite films to modify gold microelectrodes for glucose biosensors: Study of the extended linearity. Biosens. Bioelectron. 2013; 43:75–78. [132]Rozenberg M, Shoham G. FTIR spectra of solid poly-L-lysine in the stretching NH mode range. Biophys. Chem. 2007; 125:166–171. [133]Wang F, Jiang F, Li Y, Wang Q, Zhang X. Formation of new biosilica-like structures by flow-induced forces. RSC Adv. 2012; 2:5738–5747. [134]Gao Z, Wang L, Wang L, Chen H. Detection of sulfide ions in the red-light region based on upconverting NaYF4:Yb,Er/NaGdF4 core– shell nanoparticles. Anal. Methods 2017; 9:835–840. [135]Lawrence NS, Deo RP, Wang J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Anal. Chim. Acta 2004; 517:131–137. [136]Giovanelli D, Lawrence NS, Wilkins SJ, Jiang L, Jones TGJ, Compton RG. Anodic stripping voltammetry of sulphide at a nickel film: towards the development of a reagentless sensor. Talanta 2003; 61:211– 220. [137]Giovanelli D, Lawrence NS, Jiang L, Jones TGJ, Compton RG. Electrochemical determination of sulphide at nickel electrodes in alkaline media: a new electrochemical sensor. Sens. Actuators, B 2003; 88:320– 328. [138]Aziz MA, Sohail M, Oyama M, Mahfoz W. Electrochemical investigation of metal oxide conducting electrodes for direct detection of sulfide. Electroanalysis 2015; 27:1268–1275. [139]Sun W, Zhang Y, Ju X, Li G, Gao H, Sun Z. Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Anal. Chim. Acta 2012; 752:39–44. [140]Wei Y, Luo L, Ding Y, Si X, Ning Y. Highly sensitive determination of methotrexate at poly (L-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochem. 2014; 98:70–75. [141]Santos DP, Zanoni MV, Bergamini MF, Paquim AMC, Diculescu VC, Brett AM. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochim. Acta 2008; 53:3991-4000. [142]Al-Kharafi FM, Saad AY, Ateya BG, Ghayad IMC. Electrochemical oxidation of sulfide ions on platinum electrodes. Mod. Appl. Sci. 2010; 4:2–11. [143]Caliari PC, Pacheco MJ, Ciríaco LF, Lopesa AMC, Anodic oxidation of sulfide to sulfate: Effect of the current density on the process kinetics. J. Braz. Chem. Soc. 2017; 28:557–566. [144]http://www.mmh.org.tw/MackayInfo2/article/B295/195.htm [145]Rastogi, P. K.; Ganesan, V.; Azad, U. P. Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim. Acta 2016, 188, 818–824. [146]Becker, C.; Dressman, J.B.; Amidon, G.L.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Barends, D.M. International Pharmaceutical Federation, Biowaiver monographs for immediate release solid oral dosage forms: Isoniazid. J. Pharm. Sci. 2007, 96, 522–531. [147]Yan, X.; Bo, X.; Guo, L. Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode. Sens. Actuators B: Chem. 2011, 155, 837–842. [148]Khuhawar, M. Y.; Rind, F. M. A. Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood. J. Chromatogr. 2002, B 766, 357–363. [149]Calleri, E.; Lorenzi, E. D.; Furlanetto, S. Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation, J. Pharma. Biomed. Anal. 2002, 29, 1089–1096. [150]Goicoechea, H. C.; Olivieri, A. C. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration. J. Pharm. Biomed. Anal. 1999, 20, 681–686. [151]Nagaraja, P.; Murthy, K. C. S.; Yathirajan, H.S. Spectrophotometric determination of isoniazid with sodium 1,2-naphthoquinone-4-sulphonate and cetyltrimethyl ammonium bromide. Talanta 1996, 43, 1075–1080. [152]You, T.Y.; Niu, L.; Gui, J.Y.; Dong, S.J.; Wang, E.K. Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. J. Pharm. Biomed.Anal. 1999, 19, 231–237. [153]Lapa, R. A. S.; Lima, J. L. F. C.; Santos, J. L. M. Fluorimetric determination of isoniazid by oxidation with cerium (IV) in a multicommutated flow system. Anal. Chim. Acta 2000, 419, 17–23. [154] Safavi, A.; Karimi, M. A.; Nezhad, M. R. H.; Flow injection determination of isoniazid using Nbromosuccinimide-and N-chlorosuccinimide-luminol chemiluminescence systems. J. Pharm. Biomed. Anal. 2003, 30, 1499–1506. [155]Miloglu, F.D.; Oznuluer, T.; Ozdurak, B.; Miloglu, E. Design and optimization of a new voltammetric method for determination of Isoniazid by using PEDOT modified gold electrode in pharmaceuticals. Iran. J. Pharm. 2016, 15, 65–73. [156]Cheemalapati, S.; Chen, S. M.; Ali, M. A.; Al-Hemaid, F. M. A. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis. Colloids Surf. B 2014, 121, 444–450. [157]Jena, B. K.; Raj, C. R. Au nanoparticle decorated silicate network for the amperometric sensing of isoniazid. Talanta 2010, 80, 1653–1656. [158]Szlosarczyk, M.; Piech, R.; Bator, B.P.; Maslanka, A.; Opoka1, W.; Krzek, J. Voltammetric determination of isoniazid using cyclic renewable mercury film silver based electrode. Pharm. Anal. Acta 2012, 3, 1–5. [159]Gowthaman, N.S.K.; Kesavan, S.; John, S.A. Monitoring isoniazid level in human fluids in the presence of theophylline using gold platinum core shell nanoparticles modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 230, 157–166. [160]Rastogi, P.K.; Ganesan, V.; Azad, U.P. Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim.Acta 2016,188, 818–824. [161]Yang, G.; Wang, C.; Zhang, R.; Wang, C.; Qu, Q.; Hu, X. Poly (amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochem. 2008, 73, 37–42. [162]Satyanarayana, M.; Reddy, K.K.; Gobi, K.V. Multiwall carbon nanotube ensembled biopolymer electrode for selective determination of isoniazid in vitro, Anal. Methods 2014, 6, 3772–3778 [163]Gao, Z. -N.; Han, X. -X.; Yao, H.-Q.; Liang, B.; Liu, W.-Y. Electrochemical oxidation of isoniazid catalyzed by (FcM)TMA at the platinum electrode and its practical analytical application, Anal. Bioanal. Chem. 2006, 385, 1324–1329. [164]Shahrokhian, Asadian, E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim.Acta 2010, 55, 666–672. [165]Guo, Z.; Wang, Z.Y.; Wang, H.H.; Huang, G.Q.; Li, M.M. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 197–204. [166]Shahrokhian, S.; Amiri, M. Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim. Acta 2006, 157, 149–158. [167]Siqueira, N. M.; Paiva, B.; Camassola, M.; Rosenthal-Kim, E. Q.; Garcia, K. C.; Santos,F. P. D.; Soares, R. M. D. Gelatin and galactomannan-based scaffolds: Characterization and potential for tissue engineering applications, Carbohydr. Polym. 2015,133, 8–18. [168]Podshivalov, A.; Zakharova, M.; Glazacheva, E.; Uspenskaya, M.; Gelatin/potato starch edible biocomposite films: Correlation betweenmorphology and physical properties. Carbohydr. Polym. 2017,157, 1162–1172. [169]Rajkumar, C.; Thirumalraj, B.; Chen, S. M.; Chen, H. A. A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine, J. Colloid Interface Sci. 2017,487 149–155. [170]Shahrokhiana, S.; Ghalkhania, M. Glassy carbon electrodes modified with a film of nanodiamond–graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine. Electrochim. Acta 2010, 55, 3621–3627. [171]An, J.; Bi, y. Y.; Yang, C. X.; Hu, F. D.; Wang, C. M.; Electrochemical study and application on rutin at chitosan/graphene films modified glassy carbon electrode. J. Pharm. Anal. 2013, 3(2), 102–108 [172] Liu, L.; Li, C.; Boa, C.; Jia, Q.; Xiao, P.; Liu, X.; Zhang, Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 2012, 93, pp. 350-357. [173]Han, D.; Yan, L.; Chen, W.; Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet stat. Carbohydr. Polym. 2011, 83, pp. 653-658. [174]Wen, Y.; Wen, W.; Zhang, X.; Wang, S. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination. Biosens. Bioelectron. 2016, 79894–900. [175]Chen, C.; Zhang, Y.; Zeng, J.; Zhang, F.; Zhou, K.; Bowen, C. R.; Zhang, D. Aligned macroporous TiO2/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications. Appl. Surf. Sci. 2017,424, 170–176. [176]Kim, M.K.; Sundaram, K. S.; Iyengar, G.A.; Lee, K. P. A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem. Eng. J. 2015, 267, pp. 51-64. [177]Thirumalraj, B.; Raj Kumar, C.; Chen, S. M.; Veerakumar, P.; Perumal, P.; Liud, S. B. Carbon aerogel supported palladium-ruthenium nanoparticles for electrochemical sensing and catalytic reduction of food dye. Sens. Actuators B: Chem. 2018, 257, 48–59. [178]Rajkumar, C.; Veerakumar, P.; Chen, S. M.; Thirumalraj, B.; Liud, S. B. Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale 2017, 9, 6486-6496. [179]AlMarzooqi, F. A.; Al Ghaferi, A. A.; Saadat, I.; Hilal, N. Application of Capacitive Deionisation in water desalination: A review. Desalination 2014, 342, 3−15. [180]Antonietti, M.; Fechler, N.; Fellinger, T. P. Carbon Aerogels and Monoliths: Control of Porosity and Nanoarchitecture via Sol-Gel routes. Chem. Mater. 2014, 26, 196−210. [181]Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher,J. H.; Baumann, T. F. Synthesis of Graphene Aerogel with High Electrical Conductivity. J. Am. Chem. Soc. 2010, 132, 14067−14069. [182]Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554−2560. [183]Hamedi, M.; Karabulut, E.; Marais, A.; Herland, A.; Nysrom, G.; Wagberg, L. Nanocellulose Aerogels Functionalized by Rapid Layerby- Layer Assembly for High Charge Storage and Beyond. Angew. Chem., Int. Ed. 2013, 52, 12038−12042. [184]You, B.; Yin, P. Q.; An, L. N. Multifunctional Electroactive Heteroatom-Doped Carbon Aerogels. Small 2014, 10, 4352−4361. [185]Wei, X.; Wan, S.; Gao, S. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 2016, 28, 206–215. [186]Karikalan, N.; Kubendhiran, S.; Chen, S.M.; Sundaresan, P.; Karthik, R. Electrocatalytic reduction of nitroaromatic compounds by activated graphite sheets in the presence of atmospheric oxygen molecules. J. Catal. 2017, 356, 43–52. [187]Zhu, X.; Xu, j.; Duan, X.; Lu, L.; Zhang, K.; Yu, Y.; Xing, H.; Gao, Y.; Dong, L.; Sun, H.; Yang, T.; Controlled synthesis of partially reduced graphene oxide: Enhance electrochemical determination of isoniazid with high sensitivity and stability. J. Electroanal. Chem. 2015, 757, 183–191. [188]Majidi, M. R.; Jouyban, A.; Zeynali, K. A.; Voltammetric behavior and determination of isoniazid in pharmaceuticals by using over oxidized polypyrrole glassy carbon modified electrode. J. Electroanal. Chem. 2006, 589, 32–37. [189]Si, X.; Jiang, L.; Wang, X.; Ding, Y.; Luo, L. Determination of isoniazid content via cysteic acid/graphene modified glassy carbon electrode. Anal. Methods, 2015, 2, 793. [190]Balasubramanian, P.; Thirumalraj, b.; Chen, S. M.; Barathi, P. Electrochemical Determination of Isoniazid Using Gallic Acid Supported Reduced Graphene Oxide, J. Electrochem. Soc. 2017, 164 (7), H503-H508. [191]Yang, G.; Wang, C.; Zhang, R.; Wang, C.; Qu, Q.; Hu, X. Poly (amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochem. 2008, 73(1), 37–42. [192]Devadas, B.; Cheemalapati, S.; Chen, S. M.; Ali, M. A.; Al-Hemaid, F. M. Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs. Ionics 2015, 21(2), 547–555. [193]Satyanarayana, M.; Reddy K. K.; Gobi, K. V.; Multiwall carbon nanotube ensembled biopolymer electrode for selective determination of isoniazid in vitro. Anal. Methods 2014, 6(11), 3772–3778.
|