|
1.Organization, W.H. Cancer. February 2017; Available from: http://www.who.int/mediacentre/factsheets/fs297/en/. 2.American Cancer Society (2015) Global cancer facts and figures, 3rd edn. American Cancer Society, Atlanta. 3.Figueras, J., J. Torras, C. Valls, L. Llado, E. Ramos, J. Marti-Ragué, T. Serrano, and J. Fabregat, Surgical resection of colorectal liver metastases in patients with expanded indications: a single-center experience with 501 patients. Diseases of the colon & rectum, 2007. 50(4): p. 478-488. 4.Delaney, G., S. Jacob, C. Featherstone, and M. Barton, The role of radiotherapy in cancer treatment. Cancer, 2005. 104(6): p. 1129-1137. 5.Jackson, S.E. and J.D. Chester, Personalised cancer medicine. International journal of cancer, 2015. 137(2): p. 262-266. 6.Dawidczyk, C.M., C. Kim, J.H. Park, L.M. Russell, K.H. Lee, M.G. Pomper, and P.C. Searson, State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. Journal of Controlled Release, 2014. 187: p. 133-144. 7.Mansour, H.M., C.W. Park, and R. Bawa, Design and development of approved nanopharmaceutical products, in Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy and Clinical Applications. 2016, Pan Stanford Publishing Pte. Ltd. 8.Davis, M.E. and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews. Drug discovery, 2008. 7(9): p. 771. 9.Curtis, A. and C. Wilkinson, Topographical control of cells. Biomaterials, 1997. 18(24): p. 1573-1583. 10.Curtis, A. and M. Varde, Control of cell behavior: topological factors. Journal of the National Cancer Institute, 1964. 33(1): p. 15-26. 11.Martinez, E., E. Engel, J. Planell, and J. Samitier, Effects of artificial micro-and nano-structured surfaces on cell behaviour. Annals of Anatomy-Anatomischer Anzeiger, 2009. 191(1): p. 126-135. 12.Popat, K.C., K.I. Chatvanichkul, G.L. Barnes, T.J. Latempa, C.A. Grimes, and T.A. Desai, Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. Journal of biomedical materials research Part A, 2007. 80(4): p. 955-964. 13.Dalby, M.J., N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D. Wilkinson, and R.O. Oreffo, The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature materials, 2007. 6(12): p. 997. 14.Dalby, M.J., D. McCloy, M. Robertson, H. Agheli, D. Sutherland, S. Affrossman, and R.O. Oreffo, Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials, 2006. 27(15): p. 2980-2987. 15.Kiang, J.D., J.H. Wen, J.C. del Álamo, and A.J. Engler, Dynamic and reversible surface topography influences cell morphology. Journal of Biomedical Materials Research Part A, 2013. 101(8): p. 2313-2321. 16.Riehle, M., M. Dalby, H. Johnstone, A. MacIntosh, and S. Affrossman, Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Materials Science and Engineering: C, 2003. 23(3): p. 337-340. 17.Schvartzman, M., M. Palma, J. Sable, J. Abramson, X. Hu, M.P. Sheetz, and S.J. Wind, Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano letters, 2011. 11(3): p. 1306-1312. 18.Schulte, C., A. Podestà, C. Lenardi, G. Tedeschi, and P. Milani, Quantitative control of protein and cell interaction with nanostructured surfaces by cluster assembling. Accounts of chemical research, 2017. 50(2): p. 231-239. 19.Park, J., S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, and P. Schmuki, TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small, 2009. 5(6): p. 666-671. 20.Wei, Q., T.L. Pohl, A. Seckinger, J.P. Spatz, and E.A. Cavalcanti-Adam, Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein journal of organic chemistry, 2015. 11: p. 773. 21.Shi, X., L. Li, S. Ostrovidov, Y. Shu, A. Khademhosseini, and H. Wu, Stretchable and micropatterned membrane for osteogenic differentation of stem cells. ACS applied materials & interfaces, 2014. 6(15): p. 11915-11923. 22.Abagnale, G., M. Steger, V.H. Nguyen, N. Hersch, A. Sechi, S. Joussen, B. Denecke, R. Merkel, B. Hoffmann, and A. Dreser, Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015. 61: p. 316-326. 23.Richert, L., F. Vetrone, J.H. Yi, S.F. Zalzal, J.D. Wuest, F. Rosei, and A. Nanci, Surface nanopatterning to control cell growth. Advanced Materials, 2008. 20(8): p. 1488-1492. 24.Park, J., D.-H. Kim, H.-N. Kim, C.J. Wang, M.K. Kwak, E. Hur, K.-Y. Suh, S.S. An, and A. Levchenko, Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nature materials, 2016. 15(7): p. 792. 25.Jeon, H., S. Koo, W.M. Reese, P. Loskill, C.P. Grigoropoulos, and K.E. Healy, Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nature materials, 2015. 14(9): p. 918. 26.Kubow, K.E., R. Vukmirovic, L. Zhe, E. Klotzsch, M.L. Smith, D. Gourdon, S. Luna, and V. Vogel, Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nature communications, 2015. 6: p. 8026. 27.Kola, I. and J. Landis, Can the pharmaceutical industry reduce attrition rates? Nature reviews Drug discovery, 2004. 3(8). 28.Pampaloni, F., E.G. Reynaud, and E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nature reviews Molecular cell biology, 2007. 8(10): p. 839-845. 29.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30. 30.Rafiemanesh, H., M. Mehtarpour, F. Khani, S.M. Hesami, R. Shamlou, F. Towhidi, H. Salehiniya, B.R. Makhsosi, and A. Moini, Epidemiology, incidence and mortality of lung cancer and their relationship with the development index in the world. Journal of Thoracic Disease, 2016. 8(6): p. 1094-1102. 31.Koudelakova, V., M. Kneblova, R. Trojanec, J. Drabek, and M. Hajduch, Non-small cell lung cancer-genetic predictors. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 2013. 157(2). 32.Polanski, J., B. Jankowska-Polanska, J. Rosinczuk, M. Chabowski, and A. Szymanska-Chabowska, Quality of life of patients with lung cancer. OncoTargets and therapy, 2016. 9: p. 1023. 33.Masuda, T., H. Imai, T. Kuwako, Y. Miura, R. Yoshino, K. Kaira, K. Shimizu, N. Sunaga, Y. Tomizawa, and S. Ishihara, Efficacy of platinum combination chemotherapy after first-line gefitinib treatment in non-small cell lung cancer patients harboring sensitive EGFR mutations. Clinical and Translational Oncology, 2015. 17(9): p. 702-709. 34.Park, S., B. Keam, S.H. Kim, K.H. Kim, Y.J. Kim, J.-S. Kim, T.M. Kim, S.-H. Lee, D.-W. Kim, and J.S. Lee, Pemetrexed singlet versus nonpemetrexed-based platinum doublet as second-line chemotherapy after first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor failure in non-small cell lung cancer patients with EGFR mutations. Cancer research and treatment: official journal of Korean Cancer Association, 2015. 47(4): p. 630. 35.Teixidó, C., N. Vilariño, R. Reyes, and N. Reguart, PD-L1 expression testing in non-small cell lung cancer. Therapeutic advances in medical oncology, 2018. 10: p. 1758835918763493. 36.Zarogoulidis, K., P. Zarogoulidis, K. Darwiche, E. Boutsikou, N. Machairiotis, K. Tsakiridis, N. Katsikogiannis, I. Kougioumtzi, I. Karapantzos, and H. Huang, Treatment of non-small cell lung cancer (NSCLC). Journal of thoracic disease, 2013. 5(Suppl 4): p. S389. 37.Johnson, D.B., M.J. Rioth, and L. Horn, Immune checkpoint inhibitors in NSCLC. Current treatment options in oncology, 2014. 15(4): p. 658-669. 38.Wang, Y., H. Dong, M. Xu, B. Xin, W. Niu, D. Xu, P. Zhao, B. Zhang, Z. Li, and L. Liu, 37-kDa laminin receptor precursor promotes lung adenocarcinoma cell invasion and metastasis by epithelial-to-mesenchymal transition. Cancer gene therapy, 2014. 21(4): p. 150. 39.Restelli, M., M. Magni, V. Ruscica, P. Pinciroli, L. De Cecco, G. Buscemi, D. Delia, and L. Zannini, A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation. Cell death & disease, 2016. 7(11): p. e2453. 40.Adcock, A.F., G. Trivedi, R. Edmondson, C. Spearman, and L. Yang, Three-Dimensional (3D) cell cultures in cell-based assays for in-vitro evaluation of anticancer drugs. Journal of Analytical & Bioanalytical Techniques, 2015. 6(3): p. 1. 41.Lee, J., A.A. Abdeen, X. Tang, T.A. Saif, and K.A. Kilian, Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials, 2015. 69: p. 174-183. 42.Ross, A.M., Z. Jiang, M. Bastmeyer, and J. Lahann, Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small, 2012. 8(3): p. 336-355. 43.Liu, J., G. Hu, D. Chen, A. Gong, G. Soori, T. Dobleman, and X. Chen, Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells. Oncogenesis, 2013. 2(9): p. e73. 44.Jiao, D., J. Wang, W. Lu, X. Tang, J. Chen, H. Mou, and Q.-y. Chen, Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Molecular Therapy-Oncolytics, 2016. 3. 45.d’Amato, T.A., R.J. Landreneau, R.J. McKenna, R.S. Santos, and R.J. Parker, Prevalence of in vitro extreme chemotherapy resistance in resected nonsmall-cell lung cancer. The Annals of thoracic surgery, 2006. 81(2): p. 440-447. 46.Sun, F.-F., Y.-H. Hu, L.-P. Xiong, X.-Y. Tu, J.-H. Zhao, S.-S. Chen, J. Song, and X.-Q. Ye, Enhanced expression of stem cell markers and drug resistance in sphere-forming non-small cell lung cancer cells. International journal of clinical and experimental pathology, 2015. 8(6): p. 6287. 47.Sebens, S. and H. Schafer, The tumor stroma as mediator of drug resistance--a potential target to improve cancer therapy? Curr Pharm Biotechnol, 2012. 13(11): p. 2259-72. 48.Junttila, M.R. and F.J. de Sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013. 501(7467): p. 346-54. 49.McMillin, D.W., J.M. Negri, and C.S. Mitsiades, The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nature reviews Drug discovery, 2013. 12(3): p. 217. 50.Holle, A.W., J.L. Young, and J.P. Spatz, In vitro cancer cell–ECM interactions inform in vivo cancer treatment. Advanced drug delivery reviews, 2016. 97: p. 270-279. 51.Astashkina, A., B. Mann, and D.W. Grainger, A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacology & therapeutics, 2012. 134(1): p. 82-106. 52.Cai, Z., Y.J. Liu, X. Lu, and J. Teng, Fabrication of well-ordered binary colloidal crystals with extended size ratios for broadband reflectance. ACS applied materials & interfaces, 2014. 6(13): p. 10265-10273. 53.Wang, P.-Y., H. Pingle, P. Koegler, H. Thissen, and P. Kingshott, Self-assembled binary colloidal crystal monolayers as cell culture substrates. Journal of Materials Chemistry B, 2015. 3(12): p. 2545-2552. 54.Discher, D.E., D.J. Mooney, and P.W. Zandstra, Growth factors, matrices, and forces combine and control stem cells. Science, 2009. 324(5935): p. 1673-1677. 55.Bettinger, C.J., Z. Zhang, S. Gerecht, J.T. Borenstein, and R. Langer, Enhancement of in vitro capillary tube formation by substrate nanotopography. Advanced materials, 2008. 20(1): p. 99-103. 56.Deli, M.A., Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009. 1788(4): p. 892-910. 57.Chen, W., S. Weng, F. Zhang, S. Allen, X. Li, L. Bao, R.H. Lam, J.A. Macoska, S.D. Merajver, and J. Fu, Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS nano, 2012. 7(1): p. 566-575. 58.Lin, M., J.F. Chen, Y.T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H.R. Tseng, Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res, 2014. 47(10): p. 2941-50. 59.Predehl, K., G. Grosche, S. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. Hänsch, T. Udem, and R. Holzwarth, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 2012. 336(6080): p. 441-444. 60.Wang, R., G.C. Chu, S. Mrdenovic, A.A. Annamalai, A.E. Hendifar, N.N. Nissen, J.S. Tomlinson, M. Lewis, N. Palanisamy, and H.-R. Tseng, Cultured circulating tumor cells and their derived xenografts for personalized oncology. Asian Journal of Urology, 2016. 3(4): p. 240-253. 61.Wang, S., H. Wang, J. Jiao, K.J. Chen, G.E. Owens, K.i. Kamei, J. Sun, D.J. Sherman, C.P. Behrenbruch, and H. Wu, Three‐Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angewandte Chemie, 2009. 121(47): p. 9132-9135. 62.Yoon, J., H.-S. Yoon, Y. Shin, S. Kim, Y. Ju, J. Kim, and S. Chung, Ethanol-dispersed and antibody-conjugated polymer nanofibers for the selective capture and 3-dimensional culture of EpCAM-positive cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(5): p. 1617-1625. 63.Bardhan, N.M., P.V. Kumar, Z. Li, H.L. Ploegh, J.C. Grossman, A.M. Belcher, and G.-Y. Chen, Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering. ACS nano, 2017. 11(2): p. 1548-1558. 64.Wang, S.T., K. Liu, J.A. Liu, Z.T.F. Yu, X.W. Xu, L.B. Zhao, T. Lee, E.K. Lee, J. Reiss, Y.K. Lee, L.W.K. Chung, J.T. Huang, M. Rettig, D. Seligson, K.N. Duraiswamy, C.K.F. Shen, and H.R. Tseng, Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers. Angewandte Chemie-International Edition, 2011. 50(13): p. 3084-3088. 65.Lee, S.-K., G.-S. Kim, Y. Wu, D.-J. Kim, Y. Lu, M. Kwak, L. Han, J.-H. Hyung, J.-K. Seol, and C. Sander, Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano letters, 2012. 12(6): p. 2697-2704. 66.Yoon, H.J., T.H. Kim, Z. Zhang, E. Azizi, T.M. Pham, C. Paoletti, J. Lin, N. Ramnath, M.S. Wicha, D.F. Hayes, D.M. Simeone, and S. Nagrath, Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol, 2013. 8(10): p. 735-41. 67.Li, Y., Q. Lu, H. Liu, J. Wang, P. Zhang, H. Liang, L. Jiang, and S. Wang, Antibody‐Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells. Advanced Materials, 2015. 27(43): p. 6848-6854. 68.Yu, X.L., R.X. He, S.S. Li, B. Cai, L.B. Zhao, L. Liao, W. Liu, Q. Zeng, H. Wang, S.S. Guo, and X.Z. Zhao, Magneto-Controllable Capture and Release of Cancer Cells by Using a Micropillar Device Decorated with Graphite Oxide-Coated Magnetic Nanoparticles. Small, 2013. 9(22): p. 3895-3901. 69.Wang, P.-Y., H. Thissen, and P. Kingshott, Stimulation of early osteochondral differentiation of human mesenchymal stem cells using binary colloidal crystals (BCCs). ACS Applied Materials & Interfaces, 2016. 8(7): p. 4477–4488. 70.Wang, P.-Y., S.S.-C. Hung, H. Thissen, P. Kingshott, and R.C.-B. Wong, Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs). Scientific Reports, 2016. 6: p. 36845. 71.Thoma, C.R., M. Zimmermann, I. Agarkova, J.M. Kelm, and W. Krek, 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced drug delivery reviews, 2014. 69: p. 29-41. 72.Yu, M., A. Bardia, N. Aceto, F. Bersani, M.W. Madden, M.C. Donaldson, R. Desai, H. Zhu, V. Comaills, Z. Zheng, B.S. Wittner, P. Stojanov, E. Brachtel, D. Sgroi, R. Kapur, T. Shioda, D.T. Ting, S. Ramaswamy, G. Getz, A.J. Iafrate, C. Benes, M. Toner, S. Maheswaran, and D.A. Haber, Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 2014. 345(6193): p. 216-220. 73.Cayrefourcq, L., T. Mazard, S. Joosse, J. Solassol, J. Ramos, E. Assenat, U. Schumacher, V. Costes, T. Maudelonde, K. Pantel, and C. Alix-Panabières, Establishment and Characterization of a Cell Line from Human Circulating Colon Cancer Cells. Cancer Research, 2015. 75(5): p. 892-901. 74.Lee, M.-Y., R.A. Kumar, S.M. Sukumaran, M.G. Hogg, D.S. Clark, and J.S. Dordick, Three-dimensional cellular microarray for high-throughput toxicology assays. Proceedings of the National Academy of Sciences, 2008. 105(1): p. 59-63. 75.Fong, E.L., M. Martinez, J. Yang, A.G. Mikos, N.M. Navone, D.A. Harrington, and M.C. Farach-Carson, Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Molecular pharmaceutics, 2014. 11(7): p. 2040-2050. 76.Tung, Y.-C., A.Y. Hsiao, S.G. Allen, Y.-s. Torisawa, M. Ho, and S. Takayama, High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011. 136(3): p. 473-478. 77.Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews. Cancer, 2003. 3(5): p. 330. 78.Verjans, E.T., J. Doijen, W. Luyten, B. Landuyt, and L. Schoofs, Three‐dimensional cell culture models for anticancer drug screening: worth the effort? Journal of Cellular Physiology, 2017. 79.Kimlin, L.C., G. Casagrande, and V.M. Virador, In vitro three‐dimensional (3D) models in cancer research: An update. Molecular carcinogenesis, 2013. 52(3): p. 167-182. 80.Zanoni, M., F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Scientific reports, 2016. 6. 81.Wang, P.-Y., H. Thissen, and P. Kingshott, Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta biomaterialia, 2016. 45: p. 31-59. 82.Jin, L., X. Zeng, M. Liu, Y. Deng, and N. He, Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics, 2014. 4(3): p. 240. 83.Golshadi, M., L.K. Wright, I.M. Dickerson, and M.G. Schrlau, High‐Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays. Small, 2016. 12(22): p. 3014-3020. 84.Shalek, A.K., J.T. Robinson, E.S. Karp, J.S. Lee, D.-R. Ahn, M.-H. Yoon, A. Sutton, M. Jorgolli, R.S. Gertner, and T.S. Gujral, Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences, 2010. 107(5): p. 1870-1875. 85.Huang, N.-C., Q. Ji, K. Ariga, and S.-h. Hsu, Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015. 7(6): p. e184. 86.Adler, A.F. and K.W. Leong, Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today, 2010. 5(6): p. 553-569. 87.Jo, S. and K. Park, Surface modification using silanated poly (ethylene glycol) s. Biomaterials, 2000. 21(6): p. 605-616.
|