跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉哲延
研究生(外文):Jhe-Yan Liou
論文名稱:在硫酸中二次陽極處理之鋁材上製備超疏水表面
論文名稱(外文):Preparation of Superhydrophobic Surfaces on Aluminum after the Second Anodic Treatment in Sulfuric Acid Solution
指導教授:施幸祥
指導教授(外文):Hsing-Hsiang Shih
口試委員:施幸祥
口試委員(外文):Hsing-Hsiang Shih
口試日期:2018-06-27
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:疏水膜蓮花效應氧化鋁二次陽極
外文關鍵詞:aluminalotus effectSecondary anodehydrophobic membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在於探討於鋁材上仿效蓮花效應,製備具超疏水性的表面。蓮花效應是仿生學的一種,是藉模仿生物的特殊性質作為研究之科學,蓮花效應即是模仿蓮葉表面不會被液體濕潤的疏水性及自潔性。
超疏水性表面接觸角常因經過長時間而導致接觸角下降,本實驗利用增加二次陽極處理的步驟,使其產生大範圍規則孔洞在鋁材之上,使自組裝過程中可緩慢且穩定的生成較緻密且硬度較高的疏水膜。
實驗利用化學蝕刻以及二次陽極,兩種不同處理步驟,分別於鋁材表面製備超疏水結構,最後再以十四酸進行自組裝,製得具自清潔性的超疏水表面。
在鋁材經由二次陽極過後,膜硬度最高表現在313 Hv,其接觸角也都在145 o以上,在耐腐蝕性上混酸預浸漬之鋁片也優於其他試片,具耐腐蝕的特性,則硬度表現最佳之鋁材接觸角在149.02o,且膜粗糙度範圍於1m ~ 3m之間,相對於只有一次陽極的鋁材穩定,而在經過270天的長效性測定後,接觸角僅衰退2 % ~ 3 %,表現出了長效穩定性。
This research aims at the investigation of preparing the superhydrophobic surfaces on the aluminum materials by simulating the lotus effect.Bionics is a science research by simulate the special nature of biological,lotus effect is a kind of that, a simulate of the lotus effect follows hydrophobicity and self-cleaning of lotus surface which are not wetted by liquid.
Superhydrophobic surface contact angles often result in a decrease in contact angle over a long period of time. In this experiment, the step of increasing the secondary anode treatment is used to produce a large range of regular pores on the aluminum material, so that a relatively dense and high hardness hydrophobic membrane can be formed slowly and stably during the self-assembly process.
The experiment uses chemical etching and secondary anode, two different treatment steps to prepare superhydrophobic structure on the surface of aluminum, and finally self-assembly with tetradecanoic acid to obtain super-hydrophobic surface with self-cleaning.
After the aluminum material passes through the secondary anode, the hardness of the film is up to 313 Hv, and the contact angle is also above 145 o. The aluminum sheet pre-impregnated with acid in the corrosion resistance is superior to other test pieces and has corrosion resistance. The best hardness of the aluminum contact angle is 149.02o and the film roughness ranges from 1m to 3m, which is stable compared to aluminum with only one anode, and long-lasting after 270 days. After the measurement, the contact angle only declined by 2% to 3%, showing long-term stability.
中文摘要 4
英文摘要 5
目錄 7
圖目錄 10
第一章 緒論 12
1.1 前言 12
1.2 研究目標 14
第二章 理論基礎 15
2.1 超疏水表面接觸角理論 15
2.1.1楊氏方程式(Young’s Equation) 17
2.1.2 Wenzel和Cassie Theory 19
2.1.3濕潤性(Wetting) 21
2.1.4 遲滯角(Hysteresis) 21
2.1.5 濕潤接觸面積(Wetting Area) 22
2.1.6 表面自由能(Surface Free Energy) 23
2.2鋁材的前處理 26
2.2.1鹼洗 26
2.2.2酸洗 26
2.2.3水洗 26
2.2.4 風乾 26
2.3鋁材陽及氧化 26
2.3.1陽極氧化模的構造 27
2.3.2鋁材陽極氧化的生成機制 29
2.3.3脈衝電流法 31
2.4鋁材二次陽極處理 33
2.5自組裝 34
2.5.1 分子自組裝的原理及特點 35
2.5.2 自組裝單層膜 37
2.5.3 自組裝單層膜(SAMS)的成膜機制 39
2.6腐蝕試驗 40
第三章 實驗方法 42
3.1材料及樣品準備 42
3.2實驗程序 44
3.2.1 前處理過程 44
3.2.2二次陽極處理 44
3.3性質測試 45
3.3.1膜厚 45
3.3.2硬度 45
3.3.3掃描式電子顯微鏡 46
3.3.4水接觸角測量 46
3.3.5場發射掃描式電子顯微鏡 48
3.3.6超疏水長效性測定 48
3.3.7 腐蝕試驗 48
第四章 結果與討論 49
4.1 膜厚 50
4.2 硬度 53
4.3 表面粗糙度 56
4.4 水接觸角 59
4.5 SEM 63
4.6長效性試驗 67
4.7 腐蝕試驗 72
第五章 結論 75
參考文獻 77
1.F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem Soc. 41 (1953) 100.
2.V. Lehmann and H. Föll, J. Electrocnem, Soc. 653 (1990) 137.
3.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 710 (1992). 359.
4.J. N. Chazalviel, R. B. Wehrspohn, F. Ozanam, Mat. Sci. Eng. B 69-70( 2000) 1 – 10.
5.L.E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Surf. Coat. Technol. 157 (2002) 80.
6.Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 995;268:1466–8.
7.Masuda H, Satoh M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 1996;35:L126–9.
8.Masuda H, Yada K, Osaka A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn J Appl Phys 1998;37:L1340–2.
9.Masuda H, Hasegawa F, Ono S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 1997;144:L127–9.
10.Li AP, Muller F, Birner A, Nielsch K, Gosele U. Polycrystalline nanopore arrays with hexagonal ordering on aluminum. J Vac Sci Technol A 1999;17(4):1428–31.
11.Li AP, Muller F, Gosele U. Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina. Electrochem Solid-State Lett 3(2000)131–134.
12.H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, Appl. Phys. Lett. 78 (2001) 826.
13.J. S. Sun, J. S. Lee, Appl. Phys. Lett. 75 (1999) 2047.
14.C. Y. Liu, A. Datta, Y. L. Wang, Appl. Phys. Lett. 120 (2001) 78.
15.Jiang L. , Wang R. , Yang B. , et al. Binary cooperative comple2 mentary nanoscale interfacial materials . Pure Appl. Chem, 2000 ,72: 73281.

16.Young T., Philos. Trans. R. Soc. London 95, 1805.

17.Http://zh.wikipedia.org/

18.林昭榮,“特殊的界面活性劑與異常的溼潤現象”,國立中央大學化學工程與材料工程學系碩士論文(2008).

19.Http://www.ramehart.com/glossary.htm

20.Wenzel R. N, “Resistance of Solid Surface to Wetting by water”, Ind. Eng. Chem., 40, 988-994 (1936) 142.

21.Cassie A. B. D., and Baxter S., “Wettability of Porous Surface ”, Transactions of the Faraday Society, 40, 546-551 (1944).

22.Marmur A. The lotus effect : superhydrophobicity and metast2 ability [J ] . Langmuir , 2004 ,20 : 351723519.

23.http://www.sindatek.com/pro_ts.htm

24.Song M.R.,L.Song,S.L.Xu,Z.J.Zhang,Electrochimica Acta,53(2008) 7198-7203.
25.S. Wernick and R Pinner, The Surface Treatment and Finishing of Aluminum and its Alloy. 1(1972)297.
26.S. Setoh and A. Miyata, Sci Pap. Inst. Phys. Chem. Res. of Tokyo, (1932) 189.
27.D. Mcdonald and P. Bulter, Corros. Sci., 13 (1973) 259.
28.J. Cl. Puiple and N. Ibl, Plating surf. finish., 6(1980)68.
29.H. H. Shih and S. H. Tzou, Surf. coat. technol., 124(2000)278.
30.Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, Y. Q. Mao, J. Solid State Electrochem (2003).
31.O. Takahito, Y. Shinya, and E. Masayoshi, nanotechnology 14 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top