一、 網頁參考文獻
[1]富比士。線上檢索日期:2017 年 11月 30 號。網址:https://www.forbes.com/sites/maurybrown/2016/12/05/mlb-sees-record-revenues-approaching-10-billion-for-2016/#652a36227088
[2]Legal Sports Repot。線上檢索日期:2017 年 11月 30 號。網址:http://www.legalsportsreport.com/12497/nevada-sports-betting-november-2016/
[3]Baseball-Reference。線上檢索日期:2017 年 11月 30 號。網址:http://www.baseball-reference.com
[4]台灣棒球維基館。線上檢索日期:2017 年 11月 30 號。網址:http://twbsball.dils.tku.edu.tw/wiki/index.php/分類:術語
[5]MathWorks-MATLAB。線上檢索日期:2017 年 11月 30 號。https://cn.mathworks.com/help/gads/genetic-algorithm-options.html
[6]支持向量機通俗導論(理解SVM的三層境界) 。
線上檢索日期:2017 年 11月 30 號。網址:https://raw.githubusercontent.com/.../Intro2SVM/master/Intro2SVM.pdf
二、中文參考文獻
[7]董森堡,李文良,& 黃仲凌。(2011)。建構MLB球隊晉級季後賽之區別分析預測模式。台北:國立金門大學觀光管理研究所學位論文。
[8]王彥傑,& 鄭士康。(2016)。以統計分析和機器學習預測美國職棒大聯盟季後賽資格。台北:臺灣大學電信工程學研究所學位論文。
[9]許昭彥。(1995)。美國棒球(二)。台北:聯經出版社。
[10]陸永強。(1996)。美國職棒葵花寶典。台北:野球人出版。
[11]曾文誠,& 曹玉烱。(2013)。圖解MLB【修訂新版】。好讀出版社。
[12]張廖年鴻,& 白炳豐。(2013)。混合式支援向量機與決策樹模型於籃球比賽結果分析之應用。台北:國立暨南國際大學資訊管理研究所學位論文。
[13]林豐澤。(2005)。演化式計算上篇: 演化式演算法的三種理論模式。台北:智慧科技與應用統計學報。[14]鄭捷。(2016)。今天不學機器學習,明天就被機器取代:從Python入手+演算法。台北:佳魁資訊出版社。
三、英文參考文獻
[15]James, B. (1988). The Bill James historical baseball abstract. US: Random House Incorporated.
[16]Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
[17]Darwin, C., & Bynum, W. F. (2009). The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life. New York: AL Burt.
[18]Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. US: MIT press.
[19]Grefenstette, J. J. (1992, September). Genetic algorithms for changing environments. Ireland: In PPSN (Vol. 2, pp. 137-144).
[20]Zhong, M. H., Hung, J. C., Yang, Y. C., & Huang, C. P. (2016, November). GA-SVM classifying method applied to dynamic evaluation of taekwondo. In Advanced Materials for Science and Engineering (ICAMSE), International Conference on (pp. 534-537). IEEE.
[21]Ghamisi, P., & Benediktsson, J. A. (2015). Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters, 12(2), 309-313.
[22]Valdez, F., Melin, P., & Castillo, O. (2014). Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Information Sciences, 270, 143-153.
[23]Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168). NY: ACM.
[24]Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
[25]Leung, C. K., & Joseph, K. W. (2014). Sports data mining: predicting results for the college football games. Procedia Computer Science, 35, 710-719.
[26]Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. US: MIT press. (pp. 31).
[27]Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern recognition, 38(12), 2270-2285.
[28]Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
[29]Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial intelligence review, 12(4), 265-319.
[30]Mitchell, M. (1998). An introduction to genetic algorithms. US: MIT press.
[31]Dantzig, G. (2016). Linear programming and extensions. US: Princeton university press.
[32]Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
[33]Holmes, G., Donkin, A., & Witten, I. H. (1994, December). Weka: A machine learning workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on (pp. 357-361). IEEE.
[34]Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).