(3.231.29.122) 您好!臺灣時間:2021/02/25 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林政諭
研究生(外文):Lin, Cheng-Yu
論文名稱:過量鉛離子對青江菜之影響及化學組成變化之探討
論文名稱(外文):Growth and chemical response to lead excess in Brassica chinensis L. cv. Ching-Geeng
指導教授:曾梅慧曾梅慧引用關係
指導教授(外文):Tseng, Mei-Hwei
口試日期:2017-07-14
學位類別:碩士
校院名稱:臺北市立大學
系所名稱:應用物理暨化學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:青江菜成長礦物質含量代謝物含量
外文關鍵詞:Brassica chinensis L. cv. Ching-GeengleadgrowthMineralMetabolite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉛汙染被公認為重要的環境議題,主要原因為食用作物在鉛汙染農田生長並能將鉛累積在體內,被人類食用後,就會堆積在人體內,損壞身體的正常功能。本研究採用青江菜(Brassica chinensis L. cv. Ching-Geeng) 栽種在不同濃度重金屬鉛汙染的土壤中,觀察與紀錄栽種後的發芽率、生長狀況及葉片病徵,並用光學、電子顯微鏡觀察青江菜葉片表皮細胞的變化,最後使用感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry, ICP-MS)觀察青江菜根部鉛離子含量、葉片礦物質含量變化情形,並以高效能管柱液相層析 (High performance liquid chromatography, HPLC) 、一維氫譜核磁共振儀(1H Nuclear Magnetic Resonance, 1H NMR)分析鉛離子造成青江菜葉片化合物成分的改變。土壤鉛離子低濃度 (141~9400 mg/kg)時,青江菜發芽、成長沒有影響;土壤鉛離子在18321~25401 mg/kg時隨濃度越高,發芽率、平均萌發時間、植株大小、鮮重、乾重有顯著差異,葉子呈現黃化現象 (chlorosis)。遇到陽光時(光強度724.4 μmol m-2s-1,溫度35 °C)更容易蒸散而下垂,在土壤鉛離子為25401 mg/kg時,葉片的表皮細胞呈不規則狀,氣孔長度(13.11 ± 1.24 μm)比控制組的氣孔小(22.71 ± 2.88 μm);土壤鉛離子在37600 mg/kg時,青江菜沒有發芽。在ICP-MS分析中,發現鉛離子處理組(12000 mg/kg)大量鉛離子累積在根部,平均含量為974.70 ± 52.28 mg/kg;葉片鉛離子平均含量則是57.70 ± 4.17 mg/kg,根部鉛離子含量為葉片鉛離子含量的16.89倍,Bioconcentration Factor (BCF)為0.14 ± 0.03,Translocation Factor (TF)則為0.06 ± 0.00。葉片礦物質分析中K+、Cu2+、Mo2+含量減少,各為控制組的0.80、0.32、0.28倍,和含鉛土壤的皮爾森相關係數(Pearson correlation coefficient)各為-0.93、-0.87、-0.85;然而,Mg2+、Ca2+、Mn2+、Fe2+、Zn2+、Ni2+含量增加,各為控制組的1.42、1.35、1.82、1.10、1.24、0.28倍,和含鉛土壤的皮爾森相關係數(Pearson correlation coefficient)各為0.80、0.70、0.84、0.57、0.63、0.31;主成分分析(principle component analysis, PCA)中,HPLC分析的peak 1、2、3、5、6、10、18、22、28、29、30、31、33、34與鉛離子處理組(12000 mg/kg)分群,1H NMR 數據鉛離子處理組(12000 mg/kg) Threonine、Alanine、trans-sinapoyl malate含量變多,α-Glucose含量則是減少。
Lead pollution is recognized as one of the most important environmental issues. The main reason is that agricultural crops grow in the Pb2+ contaminated soil and accumulate lead inside crops. After those contaminated crops being consumed , the Pb2+ in food is accumulated in human body and damages the normal physiological function. This study investigated the toxicological characterization of Brassica chinensis L. cv. Ching-Geeng growing in lead-contaminated soils and the changes of its metabolite composition. Planting in different concentrations of Pb2+ with soil, we observed the germination rate, growth conditions and leaf symptoms; then, by using light microscope and scanning electron microscope the changes in the epidermal cells of leaf surface were observed; finally, Inductively Coupled Plasma Mass Spectrometry(ICP-MS) was used to measure Pb2+ concentration in root and leaf mineral contents, and High Performance Liquid Chromatography (HPLC), 1H Nuclear Magnetic Resonance (1H NMR) were used to analyse leaf chemical composition. Exposure of seedlings of B. chinensis to Pb2+ levels ranging from 141~9400 mg/kg, there was no effect on germination and growth. However, Pb2+ levels ranging from 18321~25401 mg/kg, resulted in a strong inhibition of shoot and root growth, shoot height, width, fresh weight, dry weight, germination rate, a delay in the mean germination time, leaf chlorosis, leaf withered under the sunlight at light intensity 724.4 μmol m-2s-1, 35 °C, the stomatal length (13.11 ± 1.23 μm) was shorter than that of the control group (22.71 ± 2.88 μm). In ICP-MS analysis of B. chinensis, Pb2+ accumulation in root was 974.70 ± 52.28 mg/kg in lead treated group (12000 mg/kg), and the Pb2+content was 16.89 times than that in the leaf (57.70 ± 4.17 mg/kg), and Bioconcentration Factor (BTF) was 0.14 ± 0.03, Translocation Factor (TF) was 0.06 ± 0.00. In the leaf mineral contents, K+, Cu2+, Mo2+ contents decreased, and the Pearson correlation coefficient between lead contamination and mineral contents were -0.93、-0.87、-0.85, respectively, however, Mg2+, Ca2+, Mn2+, Fe2+, Zn2+, Ni2+ contents increased, and the Pearson correlation coefficient were 0.80、0.70、0.84、0.57、0.63、0.31, respectively . Based on principal component analysis in HPLC data, the scores plots revealed higher intensity of peak 1, 2, 3, 5, 6, 10, 18, 22, 28, 29, 30, 31, 33, 34 in lead treated group (12000 mg/kg); and in 1H NMR analysis showed that Threonine, Alanine, trans-sinapoyl malate contents increased, and α-Glucose content decreased in high lead treated group.
謝誌 I
摘要 II
Abstract III
圖目錄 V
表目錄 VII
第一章、緒論 1
第一節、前言 1
第二節、文獻探討 5
第三節、儀器分析原理 15
第四節、青江菜 (Brassica chinensis L. cv. Ching-Geeng) 17
第二章 研究方法與步驟 18
第一節、藥品及實驗器材 19
第二節、栽種青江菜 23
第三節、Hoagland solution營養液配置 26
第四節、觀察項目 28
第五節、樣品處理 29
第六節、樣品蒐集及萃取 30
第七節、統計方式 35
第三章、研究結果與討論 36
第一節、找條件 36
第二節、鎖定濃度比較 73
第四章、討論 91
第五章、參考資料 94
1. 王新、吳燕玉,1995,改性措施對復合污染土壤重金屬行為影響的研究,應用生態學報 6(4),第 440-444 頁。
2. 王新、吳燕玉,1997,重金屬在土壤-水稻系統中的行為特性,生態學雜誌16 (4),第 10-14 頁。
3. 行政院環保署,2002,農地土壤重金屬調查與場址列管計畫。
4. 行政院環保署,2004,土壤與地下水汙染整治網,第五期電子報。
5. 行政院環保署,2014,農地鉛污染對食用作物影響試驗計畫期末報告。建材製造業重金屬危害暴露調查研究。
6. 周雲龍,2004,植物生物學第二版 北京 高等教育出版社。
7. 武維華,2003,植物生理學 北京 科學出版社。
8. 洪伯隆,2002,蒸散作用對作物吸收鉛以及根圈土壤中水溶性低分子量有機酸之影響,國立中興大學土壤環境科學系碩士論文。
9. 徐玉標,1979,工業廢水之特性對灌溉土壤及作物之影響,臺灣水利 27(4),第 5-17 頁。
10. 張庚鵬、張愛華,1997,蔬菜作物營養障礙診斷圖鑑。取自http://kmweb.coa.gov.tw/techcd/%E4%BD%9C%E7%89%A9%E7%97%85%E8%9F%B2%E5%AE%B3%E8%88%87%E8%82%A5%E5%9F%B9%E7%AE%A1%E7%90%86%E6%8A%80%E8%A1%93%E8%B3%87%E6%96%99/%E8%94%AC%E8%8F%9C/%E7%87%9F%E9%A4%8A%E8%A8%BA%E6%96%B7/%E9%9A%9C%E7%A4%99%E8%A8%BA%E6%96%B7%E5%9C%96%E9%91%91.html
11. 張淑賢,營養要素缺乏、過多或毒害徵狀,行政院農委會動植物防疫檢疫局,植物保護圖鑑系列: 第282-297頁。
12. 張雅嵐,2012,溫度對分株假紫萁綠色孢子之活力與代謝之影響,台北市立教育大學碩士班碩士論文。
13. 勞動部勞動及職業安全衛生研究所,2014,資源回收再利用板磚
14. 葉琮裕,「重金屬污染農地整治」,工程污染防治,第八十四期,第184-191 頁(2002)。
15. 葉琮裕,重金屬污染農地整治技術,環保訓練園地雙月,第 61 期,第 2-9頁(2002)。
16. 葉顓銘、陳少燕、黃定鼎、黃浩仁,清理重金屬污染的植物,科學發展,第 380 期,第 45-49 頁(2004)。
17 蔡淑茹,2015,鎳(Ni)對阿拉伯芥生長地的影響之研究,台北市立教育大學碩士班碩士論文。
18. Abdel-Farid, I.; Jahangir, M.; van den Hondel, C.; Kim, H.; Choi, Y.; Verpoorte, R. Fungal Infection-Induced Metabolites In Brassica rapa. Plant Science 2009, 176, 608-615.
19. Alloway, B. Heavy Metals In Soils; Springer: Dordrecht, 2013, 206-220.
20. Blaylock, M.; Salt, D.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.; Raskin, I. Enhanced Accumulation Of Pb In Indian Mustard By Soil-Applied Chelating Agents. Environmental Science & Technology 1997, 31, 860-865.
21. Brooks, R.R., Plants that Hyperaccumulate Heavy Metals. CAB International, Wallingford, 1998, 205.
22. Capelo, S. Effect Of Lead On The Uptake Of Nutrients By Unicellular Algae. Water Research 1993, 27, 1563-1568.
23. Cook, C.; Kostidou, A.; Vardaka, E.; Lanaras, T., Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants. Photosynthetica 1998, 34 (2), 179-193.
24. Chatterjee, C.; Dube, B.; Sinha, P.; Srivastava, P. Detrimental Effects Of Lead Phytotoxicity On Growth, Yield, And Metabolism Of Rice. Communications in Soil Science and Plant Analysis 2004, 35, 255-265.
25. Chatterjee, J.; Chatterjee, C. Phytotoxicity Of Cobalt, Chromium And Copper In Cauliflower. Environmental Pollution 2000, 109, 69-74.
26. Chen, H.; Cutright, T. EDTA And HEDTA Effects On Cd, Cr, And Ni Uptake By Helianthus Annuus. Chemosphere 2001, 45, 21-28.
27. Diehl, B., Holzgrabe, U. and Wawer, I. NMR spectroscopy in drug development and analysis. Weinheim: Wiley-VCH, 1999, 45-47.
28. Dean, J. C.; Kusaka, R.; Walsh, P. S.; Allais, F.; Zwier, T. S., Plant sunscreens in the UV-B: ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives. Journal of the American Chemical Society 2014, 136 (42), 14780-14795.
29.Gopal, R.; Rizvi, A. Excess Lead Alters Growth, Metabolism And Translocation Of Certain Nutrients In Radish. Chemosphere 2008, 70, 1539-1544.
30.Gichner, T.; Žnidar, I.; Száková, J. Evaluation Of DNA Damage And Mutagenicity Induced By Lead In Tobacco Plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2008, 652, 186-190.
31. Hoagland, D. R.; Arnon, D. I., The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 1950, 347 (2nd edit).
32. Islam, E.; Liu, D.; Li, T.; Yang, X.; Jin, X.; Mahmood, Q.; Tian, S.; Li, J. Effect Of Pb Toxicity On Leaf Growth, Physiology And Ultrastructure In The Two Ecotypes Of Elsholtzia argyi. Journal of Hazardous Materials 2008, 154, 914-926.
33. Jana, S.; Choudhuri, M. A., Senescence in submerged aquatic angiosperms: effects of heavy metals. New phytologist 1982, 90 (3), 477-484.
34. Jahangir, M.; Abdel-Farid, I. B.; Choi, Y. H.; Verpoorte, R., Metal ion-inducing metabolite accumulation in Brassica rapa. Journal of plant physiology 2008, 165 (14), 1429-1437.
35. Kazemi-Dinan, A.; Sauer, J.; Stein, R.; Krämer, U.; Müller, C. Is There A Trade-Off Between Glucosinolate-Based Organic And Inorganic Defences In A Metal Hyperaccumulator In The Field? Oecologia 2015, 178, 369-378.
36. Kim, H.; Choi, Y.; Verpoorte, R. NMR-Based Metabolomic Analysis Of Plants. Nature Protocols 2010, 5, 536-549.
37. Kopittke, P.; Asher, C.; Kopittke, R.; Menzies, N. Toxic Effects Of Pb2+ On Growth Of Cowpea (Vigna Unguiculata). Environmental Pollution 2007, 150, 280-287.
38. Kopittke, P.; Asher, C.; Menzies, N. Prediction Of Pb Speciation In Concentrated And Dilute Nutrient Solutions. Environmental Pollution, 2008, 153, 548-554.
39. Lin, Y.-C.; Kao, C.-H., Nickel toxicity of rice seedlings: Cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ Bioinfo 2005, 2 (2), 131-136.
40. López, M.; Peralta-Videa, J.; Benitez, T.; Duarte-Gardea, M.; Gardea-Torresdey, J. Effects Of Lead, EDTA, And IAA On Nutrient Uptake By Alfalfa Plants. Journal of Plant Nutrition 2007, 30, 1247-1261.
41. Martin, M.; Marschner, H. The Mineral Nutrition Of Higher Plants. The Journal of Ecology 1988, 76, 1250.
42. Małkowski, E., Kita, A., Galas, W., Karcz, W., Kuperberg, J.M. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation 2002, 37, 69-76
43. Malone, C.; Koeppe, D.; Miller, R. J., Localization of lead accumulated by corn plants. Plant Physiology 1974, 53 (3), 388-394
44. Manivasagaperumal, R.; Balamurugan, S.; Thiyagarajan, G.; Sekar, J., Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Current Botany 2011, 2 (5).
45. Manivasagaperumal, R.; Balamurugan, S.; Thiyagarajan, G.; Sekar, J., Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Current Botany 2011, 2 (5).
46. Mayer, R. N. W. Lepp (Ed.) Effect Of Heavy Metal Pollution On Plants. Vol. 1: Effects Of Trace Metals On Plant Function. 352 S. Vol. 2: Metals In The Environment. 257 S. Applied Science Publishers, London And New Jersey, 1981.Zeitschrift für Pflanzenernährung und Bodenkunde 1982, 145, 100-101.
47. Mohanpuria, P.; Rana, N.; Yadav, S. Cadmium Induced Oxidative Stress Influence On Glutathione Metabolic Genes Of Camellia Sinensis (L.) O. Kuntze. Environmental Toxicology 2007, 22, 368-374.
48. Nematshahi, N.; Lahouti, M.; Ganjeali, A., Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). European Journal of Experimental Biology 2012, 2.
49. Piotrowska, A.; Bajguz, A.; Godlewska-Żyłkiewicz, B.; Czerpak, R.; Kamińska, M. Jasmonic Acid As Modulator Of Lead Toxicity In Aquatic Plant Wolffia Arrhiza (Lemnaceae). Environmental and Experimental Botany 2009, 66, 507-513.
50. Rolfe, G. Lead Uptake By Selected Tree Seedlings. Journal of Environment Quality 1973, 2, 153.
51. Scoccianti, V.; Crinelli, R.; Tirillini, B.; Mancinelli, V.; Speranza, A. Uptake And Toxicity Of Cr(III) In Celery Seedlings. Chemosphere 2006, 64, 1695-1703.
52. Seregin, I.; Shpigun, L.; Ivanov, V. Distribution And Toxic Effects Of Cadmium And Lead On Maize Roots. Russian Journal of Plant Physiology 2004, 51, 525-533.
53. Singh, R.; Tripathi, R.; Dwivedi, S.; Kumar, A.; Trivedi, P.; Chakrabarty, D. Lead Bioaccumulation Potential Of An Aquatic Macrophyte Najas Indica Are Related To Antioxidant System. Bioresource Technology 2010, 101, 3025-3032.
54. Shiomi, N., An assessment of the Causes of Lead Pollution and the Efficiency of Bioremediation by Plants and Microorganisms. In Advances in Bioremediation of Wastewater and Polluted Soil, 2015
55. Sharma, D.; Sharma, C., Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communications 1993, 317-322.
56. Sharma, P.; Dubey, R. Lead Toxicity In Plants. Brazilian Journal of Plant Physiology 2005, 17, 35-52.
57. Shekar , C.; Sammaiah, D.; Shasthree T.; Reddy, K. “Effect of mercury on tomato growth and yield attributes,” International Journal of Pharma and Bio Sciences 2011, 2 (2), 358-364
58. Sinha, P.; Dube, B.; Srivastava, P.;Chatterjee, C . Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 2006, 65,651-656
59. Wenlin Zhang, Nicole G. J. Tan ,Sam F. Y. Li. NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Molecular BioSystems 2014, 10, 149-160
60. William G. Hopkins, Norman P.A Huner. Plant physiology; Wiley 68-71
61. Wong, M.; Chuah, G.; Ang, K.; Koh, L. Interactive Effects Of Lead, Cadmium And Copper Combinations In The Uptake Of Metals And Growth Of Brassica chinensis. Environmental and Experimental Botany 1986, 26, 331-339.
62. Wójcik, M.; Tukiendorf, A. Phytochelatin Synthesis And Cadmium Localization In Wild Type Of Arabidopsis Thaliana. Plant Growth Regulation 2004, 44, 71-80.
63.Wu, H.; Liu, X.; Zhao, J.; Yu, J., Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. Journal of plant growth regulation 2013, 32 (2), 353-361.
64. Xiong, Z. T.; Zhao, F.; Li, M. j., Lead toxicity in Brassica pekinensis Rupr.: Effect on nitrate assimilation and growth. Environmental toxicology 2006, 21 (2), 147-153.
電子全文 電子全文(網際網路公開日期:20230124)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔