1.王一雄、陳尊賢、李達源,土壤污染學,國立空中大學,1993。
2.王三郎,應用微生物學,高立圖書出版有限公司,2000。
3.方彥程,柴油降解菌應用於土耕法及結合細胞固定化技術降解水中柴油之研究,國立成功大學環境工程學系,碩士論文,2007。4.行政院環境保護署土壤及地下水污染整治基金管理會,101年度土壤及地下水整治年報,2013。
5.李芳胤、陳世賢,土壤分析實驗手冊,新文京開發出版股份有限公司,2007。
6.周建良,醣脂類生物界面活性劑rhamnolipid醱酵基質最適化及生產策略之研究,國立成功大學化學工程學系,碩士論文,2005。
7.林耕詠,芘降解菌之分離及其土壤生物復育之應用,嘉南藥理科技大學環境工程與科學系,碩士論文,2011。8.陳振鐸,基本土壤學,徐氏基金會,1991。
9.馬志強,應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率,國立成功大學環境工程系研究所,碩士論文,2005。10.翁序伯,重金屬污染農地淋洗處理及其土壤性質改變之研究,國立中興大學環境工程學系,碩士學位論文,2005。11.陳俊宏,受苯、萘污染土壤之生物復育研究,萬能科技大學工程科技研究所,碩士論文,2012。12.曾依蕾,柴油降解菌組合的最佳化,國立成功大學環境工程系研究所,碩士論文,2005。13.黃奕達,應用柴油降解菌於受油品污染土壤整治之研究,萬能科技大學工程科技研究所,碩士論文,2013。14.蔡在唐,以電動力法復育受油品污染土壤,國立屏東科技大學環境工程與科學系,碩士學位論文,2003。15.潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,國立成功大學環境工程學系,碩士論文,2006。16.Atlas, R. M., Microbial degradation of petroleum hydrocarbons: an environmental perspective, Microb. Rev., 45, 180-209, 1981.
17.Atlas, R. M., (Ed.), Petroleum Microbiology, Macmillan Publishing Company, New York, 1984.
18.Autry, A. R., Ellis, G. M., Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil, Environmental Progress, 11(4), 318-323, 1992.
19.Bossert, I., Bartha, R., The fate of petroleum in soil ecosystems, In: Atlas, R. M. (Ed.), Petroleum Microbiology, Macmillan Publishing Company, New York, 435-476, 1984.
20.Brett, C. M. A., Brett, A. M. O. Electrochemistry principles, methods, and applications, Oxford University Press Inc., United States, 1993.
21.Bregnard, T. P. A., Höhener, P., Zeyer, J., Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions, Environmental Toxicology and Chemistry, 17(7), 1222-1229, 1998.
22.Bach, H., Berdichevsky, Y., Gutnick, D., An Exocellular Protein from the Oil-Degrading Microbe Acinetobacter venetianus RAG-1 Enhances the Emulsifying Activity of the Polymeric Bioemulsifier Emulsan, Appl Environ Microbiol., 69(5), 2608-2615, 2003.
23.Benincasa, M., Abalos, A., Oliveira, I., Manresa, A., Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock, Antonie van Leeuwenhoek, 85(1), 1-8, 2004.
24.Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J. P., Marchant, R., Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology., 87(2), 427-444, 2010.
25.Bezza F. A., Chirwa, E. M. N., Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2, Biochemical Engineering Journal, 101, 168-178, 2015.
26.Bezza, F. A., Beukes, M. Chirwa, E. M. N., Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation, Process Biochemistry, 50(11), 1911-1922, 2015.
27.Blyth, W., Shahsavari, E., Morrison, P. D., Ball, A. S., Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site, Journal of Environmental Management, 162, 30-36, 2015.
28.Borah, D., Yadav, R. N. S., Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain, Egyptian Journal of Petroleum, 26, 181-188, 2017.
29.Cooney, J. J., The fate of petroleum pollutants in freshwater ecosystems, In: Atlas, R. M. (Ed.), Petroleum Microbiology, Macmillan Publishing Company, New York, 355-398, 1984.
30.Cooper, D. G., Biosurfactants, Microbiol. Sci., 3, 145-149, 1986.
31.Cerniglia C. E., Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation, 3, 351-368, 1992.
32.Chen, J., Song, X., Zhang, H., Qu, Y., Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae, Enzyme and Microbial Technology, 39, 501-506, 2006.
33.Chen, J., Song, X., Zhang, H., Qu, Y., Miao, J., Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells, Appl Microbiol Biotechnol., 72(1), 52-59, 2006.
34.Chen, S. Y., Lu, W. B., Wei, Y. H., Chen, W. M., Chang, J. S., Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2, Biotechnol Prog., 23(3), 661-666, 2007.
35.Chen, Q., Bao, M., Fan, X., Liang, S., Sun, P., Rhamnolipids enhance marine oil spill bioremediation in laboratory system, Mar Pollut Bull., 71(1-2), 269-275, 2013.
36.Cheng, T., Liang, J., He, J., Hu, X., Ge, Z., Liu, J., A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation, AMB Express., 7, 120, 2017.
37.Desai, J. D., Banat, I. M., Microbial Production of Surfactants and Their Commercial Potential, Microbiol Mol Biol Rev., 61(1), 47-64, 1997.
38.Freeze, R. A., Cherry, J. A., Groundwater, Prentice hall, 1979.
39.Fukuoka, T., Morita, T., Konishi, M., Imura, T., Kitamoto, D., A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B, Carbohydr Res., 343(3), 555-560, 2008.
40.Georgiou, G., Lin, S. C., Sharma, M. M., Surface active compounds from microorganisms, Biotechnology (N Y)., 10(1), 60-5, 1992.
41.Guha, S., Jaffé P. R., Bioavailability of hydrophobic compounds partitioned into micellar phase of nonionic surfactants, Environ. Sci. Technol. 30(4), 1382-1391, 1996.
42.Guiyun, B., Brusseau, M. L., Miller, R. M., Biosurfactant-enhanced removal of residual hydrocarbon from soil, Journal of Contaminant Hydrology, 25(1-2), 157-170, 1997.
43.Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., Basri, M., Biodegradation of hydrocarbons in soil by microbial consortium, International Biodeterioration & Biodegradation, 54, 61-67, 2004.
44.Gandhimathi, R., Seghal Kiran, G., Hema, T., Selvin, J., Rajeetha Raviji, T., Shanmughapriya, S., Production and characterization of lipopeptide biosurfactant by a sponge-associated marine Actinomycetes Nocardiopsis alba MSA10, Biopro Biosys Eng., 32(6), 825-835, 2009.
45.Hewald, S., Linne, U., Schere, M., Marahiel, M.A., Kamper, J., Bolker, M., Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis, Appl Environ Microbiol., 72(8), 5469-5477, 2006.
46.Haddad, N. I., Wang, J., Mu, B., Identification of a biosurfactant producing strain: Bacillus subtilis HOB2, Protein Pept Lett., 16(1), 7-13, 2009.
47.Hultberg, M., Alsberg, T., Khalil, S., Alsanius, B., Late blight on potato is suppressed by the biosurfactant-producing strain Pseudomonas koreensis 2.74 and its biosurfactant, Biocontrol, 55(4), 435-444, 2010.
48.Hörmann, B., Müller, M. M., Syldatk, C., Hausmann, R., Rhamnolipid production by Burkholderia plantarii DSM 9509T, European J Lipid Sci Technol., 112(6), 674-680, 2010.
49.Habe, H., Taira, T., Imura, T., Screening of a Bacillus subtilis Strain Producing Multiple Types of Cyclic Lipopeptides and Evaluation of Their Surface-tension-lowering Activities, J Oleo Sci., 66(7), 785-790, 2017.
50.Janek, T., Lukaszewicz, M., Rezanka, T., Krasowska, A., Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard, Bioresour Technol, 101(15), 6118-6123, 2010.
51.Janbandhu, A. Fulekar, M. H., Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment, Journal of Hazardous Materials, 187, 333-340, 2011.
52.Kanga, S. H., Bonner, J. S., Page, C. A., Mills, M. A., Autenrieth, R. L., Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants, Environmental Science and Technology, 31, 556-561, 1997.
53.Kulakovskaya, T., Shashkov, A., Kulakovskaya, E., Golubev, W., Zinin, A., Tsvetkov, Y., Grachev, A., Nifantiev, N., Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities, J Oleo Sci., 58(3), 133-140, 2009.
54.Kim, P. I., Ryu, J., Kim, Y. H., Chi, Y. T., Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides, J. Microbiol. Biotechnol., 20(1), 138-145, 2010.
55.Kurtzman, C. P., Price, N. P., Ray, K. J., Kuo, T. M., Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade, FEMS Microbiol Lett., 311(2), 140-146., 2010.
56.Kiran, G.S., Thomas, T.A., Selvin, J., Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation, Colloids and Surfaces B: Biointerfaces., 78(1), 8-16, 2010a.
57.Kiran, G., Anto Thomas, T., Selvin, J., Sabarathnam, B., Lipton, A. P., Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture, Bioresour Technol, 101(7), 2389-2396, 2010b.
58.Konishi, M., Fukuoka, T., Nagahama, T., Morita, T., Imura, T., Kitamoto, D., Hatada, Y., Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea, J Biosci Bioeng., 110(2), 169-175, 2010.
59.Kuyukina, M. S., Ivshina, I. B., Baeva, T. A., Kochina, O. A., Gein, S. V., Chereshnev, V. A., Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities, New Biotechnology, 32(6), 559-568, 2015.
60.Leahy, J., Colwell., R., Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54, 305-315, 1990.
61.Li, H., Tanikawa, T., Sato, Y., Nakagawa, Y., Matsuyama, T., Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family, Microbiol Immunol., 49(4), 303-310, 2005.
62.Liu, X., Ren, B., Chen, M., Wang, H., Kokare, C., Zhou, X., Wang, J., Dai, H., Song, F., Liu, M., Wang, J., Wang, S., Zhang, L., Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3, Appl Microbiol Biotechnol., 87(5), 1881-1893, 2010.
63.Morgan, P., Watkinson, R. J., Hydrocarbon degradation in soils and methods for soil biotreatment, Crit Rev Biotechnol., 8(4), 305-33, 1989.
64.Maier, R. M., Soberón-Chávez G., Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications, Appl Microbiol Biotechnol., 54(5), 625-33, 2000.
65.Mulligan, C. N., Environmental applications for biosurfactants, Environ Pollut, 133(2), 183-98, 2005.
66.Morita, T., Fukuoka, T., Konishi, M., Imura, T., Yamamoto, S., Kitagawa, M., Sogabe, A., Kitamoto, D., Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties and high hydrophilicity, Appl Microbiol Biotechnol., 83(6), 1017-1025, 2009.
67.Makkar, R. S., Cameotra, S. S., Banat, I. M., Advances in utilization of renewable substrates for biosurfactant production, AMB Express., 1, 5, 2011.
68.Morita, T., Fukuoka, T., Imura, T., Kitamoto, D., Mannosylerythritol Lipids: Production and Applications, J. Oleo Sci., 64(2), 133-141, 2015.
69.Oliveira, F. J. S., Vazquez, L., de Campos, N. P., de França, F. P., Production of rhamnolipids by a Pseudomonas alcaligenes strain, Process Biochem, 44(4), 383-389, 2009.
70.Oluwaseun, A. C., Kola, O. J., Mishra, P., Singh, J. R., Singh, A. K., Cameotra, S. S., Micheal, B. O., Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities, Sustainable Chemistry and Pharmacy, 6, 26-36, 2017.
71.Providenti, M. A., Lee H., Trevors, J. T., Selected factors limiting the microbial degradation of recalcitrant compounds, J. Ind. Microbiol., 12, 379-395, 1993.
72.Peng, F., Liu, Z., Wang, L., Shao, Z., An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants, J Appl Microbiol., 102(6), 1603-1611, 2007.
73.Peng, F., Wang, Y., Sun, F., Liu, Z., Lai, Q., Shao, Z., A novel lipopeptide produced by a Pacific ocean deep-sea bacterium, Rhodococcus sp. TW53, J Appl Microbiol., 105(3), 698-705, 2008.
74.Patowary, K., Patowary, R., Kalita, M. C., Deka, S., Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites, Front. Microbiol., 7, 1092, 2016.
75.Patowary, K., Patowary, R., Kalita, M. C., Deka, S., Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon, Front. Microbiol., 8, 279, 2017.
76.Ruberto, L., Vazquez, S. C., Cormack, W. P. M., Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil, International Biodeterioration & Biodegradation, 52, 115-125, 2003.
77.Rahman, P. K. S. M., Pasirayi, G., Auger V., Ali Z., Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor, Biotechnology and Applied Biochemistry, 55(1), 45-52, 2010.
78.Shoham, Y., Rosenberg, M., Rosenberg, E., Bacterial degradation of emulsan, Appl Environ Microbiol., 46(3), 573-579, 1983.
79.Scheibenbogen, K., Zytner, R. G. Lee, H., Trevors, J. T., Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants, Journal of Chemical Technology and Biotechnology, 59, 53-59, 1994.
80.Salanitro, J. P., Diaz, L. A., Anaerobic biodegradability testing of surfactants, Chemosphere, 30(5), 813-30, 1995.
81.Sudo, T., Zhao, X., Wakamatsu, Y., Shibahara, M., Nomura, N., Nakahara, T., Suzuki, A., Kobayashi, Y., Jin, C., Murata, T., Yokoyama, K. K., Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids, Cytotechnology, 33, 259-264, 2000.
82.Seklemova, E., Pavlova, A., Kovacheva, K., Biostimulation-based bioremediation of diesel fuel: field demonstration, Biodegradation, 12, 311-316, 2001.
83.Saini, H. S., Barragan-Huerta, B. E., Lebron-Paler, A., Pemberton, J. E., Vazquez, R. R., Burns, A. M., Marron, M. T., Seliga, C. J., Gunatilaka, A. A., Maier, R. M., Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties, J Nat Prod., 71(6), 1011-1015, 2008.
84.Shaligram, N. S., Singhal, R. S., Surfactin - A Review on Biosynthesis, Fermentation, Purification and Applications, Food Technol. Biotechnol., 48(2), 119-134, 2010.
85.Saravanakumari, P., Mani, K., Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multidrug resistant pathogens, Bioresour Technol., 101(22), 8851-8854, 2010.
86.Sponza, D. T., Gök, O., Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater, Bioresource Technology, 101(3), 914-924, 2010.
87.Souza E. C., Vessoni-Penna T. C., Oliveira R. P. S., Biosurfactant-enhanced hydrocarbon bioremediation: An overview, International Biodeterioration & Biodegradation, 89, 88-94, 2014.
88.Tuleva, B., Christova, N., Cohen, R., Stoev, G., Stoineva, I., Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain, Journal of Applied Microbiology, 104(6), 1703-1710, 2008.
89.Thavasi, R., Subramanyam Nambaru, V. R., Jayalakshmi, S., Balasubramanian, T., Banat, I. M., Biosurfactant production by Azotobacter chroococcum isolated from the marine environment, Mar Biotechnol., 11(5), 551-556, 2008.
90.Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., Stoineva, I., Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56, Process Biochem, 44, 135-141, 2009.
91.Vanittanakom, N., Loeffler, W., Koch, U., Jung, G., Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3, J Antibiot (Tokyo)., 39(7), 888-901, 1986.
92.Vollbrecht, E., Rau, U., Lang, S., Microbial conversion of vegetable oils into surface- active di, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec, Fett/Lipid , 101, 389-394, 1999.
93.Wagener, S., Schink, B., Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria, Appl Environ Microbiol, 54(2), 561-5, 1988.
94.West, C. C., Harwell J. H., Surfactants and subsurface remediation, Environ. Sci. Technol., 26(12), 2324-2330, 1992.
95.Willumsen, P. A. E., Karlson, U., Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactant and bioemulsifiers, Biodegradation, 7, 415-423. 1997.
96.Wang, D., Liu, Y., Lin, Z., Yang, Z., Hao, C., Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil, Wei Sheng Wu Xue Bao., 48(3), 304-311, 2008.
97.White, D. A., Hird, L. C., Ali, S. T., Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026, Journal of Applied Microbiology, 115, 744-755, 2013.
98.Yeh, D. H., Pannell, K. D., Pavlostathis, S. G. Toxicity and Biodegradation screening of nonionic surfactants using sediment-derived methanogenic consortia, Wat. Sci. Tech., 38(7), 55-62, 1998.
99.Yu, M., Liu, Z., Zeng, G., Zhong, H., Liu, Y., Jiang, Y., Li, M., He, X., He, Y., Characteristics of mannosylerythritol lipids and their environmental potential, Carbohydrate Research, 407, 63-72, 2015.