跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李幃平
研究生(外文):Wei-Ping Li
論文名稱:利用小鼠模式研究神經細胞的TLR7在其樹突形態生成所扮演的角色
論文名稱(外文):Using Mouse Model to Investigate the Role of Neuronal TLR7 in Dendritic Morphogenesis
指導教授:薛一蘋
指導教授(外文):Yi-Ping Hsueh
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:48
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類鐸受體(Toll-like receptor, TLR) 是先天性免疫系統(innate immune system)內諸多種樣式辨識受體(pattern recognition receptor)當中被研究最為透徹的一種,它們能辨識外來病原體上的病原相關分子樣式(pathogen-associated molecular pattern)及由損傷組織所釋放出來的損傷相關分子樣式(damage-associated molecular pattern),進而引起發炎反應去清除外來的病原菌或是調控組織修復機制。TLR除了在免疫系統當中扮演重要的角色之外,近期亦有許多研究指出TLR也會被表現於神經細胞(neuron)當中,並且參與在神經發育的調控機制當中。我們實驗室過去的研究也明確地指出,TLR7會表現於神經細胞當中,且對於神經突起(neurites)的生長具有負向調節(negative regulation)的功能。若在初級神經細胞培養(primary neuronal culture)中加入TLR7的促效劑(agonist),則可以清楚地觀察到神經元的樹突生成(dendritic arborization)會受到負向影響,整個樹突(dendrite)會變得較不複雜且總長度較短。另一方面,我們亦在Tlr7基因剔除小鼠(knockout mice)的海馬體CA1區(hippocampal CA1 area)當中,觀察到神經細胞的樹突生長變得更好更為複雜。至此,雖然我們已經非常確定TLR7在神經細胞的形態生成(neuronal morphogenesis)中扮演至關重要的角色,但神經元本身的TLR7 (neuronal TLR7)在這過程中所扮演的角色依然未知。為了解決這個難題,在這個研究當中,我們利用Cre-loxP系統建立二個神經專一性(neuron-specific) Tlr7條件式基因剔除(conditional knockout, cKO)小鼠模式系統(mouse model),包括Syn1-Cre-mediated Tlr7 cKO (Tlr7Syn1KO)小鼠以及NEX-Cre-mediated Tlr7 cKO (Tlr7NEXKO)小鼠,接著使用高基氏染色法(Golgi staining)去觀察與分析該基因型小鼠內的海馬體CA1區的神經細胞的樹突生成狀況。我們的神經形態分析(neuronal morphometry)結果顯示,Tlr7Syn1KO小鼠的CA1區內的神經元的樹突總長度確實有顯著地比同窩(littermate)野生型(wild-type)小鼠的樹突還要長,而且在樹突複雜度上亦可觀察到相同的趨勢。然而,我們卻發現Tlr7NEXKO小鼠的CA1區中的神經元樹突生長比起同窩的NEXCre/+小鼠還要簡單,且樹突總長度明顯較短。似乎從我們那二個小鼠模式系統得到的結果是完全相反的。由於我們的Tlr7NEXKO小鼠其NEX-Cre等位基因(allele)是嵌入型(knockin),設計上就已經破壞了原本的NEX基因編碼序列(coding sequence),這也表示該等位基因實際上已經是一個無效等位基因(null allele),可能因此影響了神經發育。此外,我們亦有發現NEXCre/+小鼠在行為實驗當中有表現顯著較多與焦慮(anxiety)相關的行為(此實驗不包含於本研究中)。相較之下,由於Tlr7Syn1KO小鼠的Syn1-Cre等位基因是一個轉殖基因(transgene),所以該小鼠基因體(genome)中所有基因的編碼序列並不受影響。因此我們認為,在那二個相互牴觸的結果當中,從Tlr7NEXKO小鼠得到的結果可能並不能代表神經細胞內TLR7的作用。於是,我們得以推論神經元本身的TLR7確實在其形態生成的過程中扮演著關鍵而且是負向調控的角色。
Toll-like receptors (TLRs), the most well-studied pattern recognition receptors in innate immune system, are able to recognize both pathogen-associated molecular patterns of foreign pathogens and damage-associated molecular patterns derived from damaged tissues, then triggering inflammatory responses to clear invading pathogens and mediate tissue repair, respectively. In addition to their critical role in innate immunity, Toll-like receptors, including TLR3, TLR4, TLR7, and TLR8, have been shown to be expressed in neurons and involved in neurodevelopment. For TLR7, our previous studies have demonstrated that activation of TLR7 with agonists in primary neuronal cultures restricts the dendrite outgrowth. Conversely, facilitation of dendritic arborization is observed in both Tlr7 knockout cultured neurons and hippocampal CA1 neurons of P7 Tlr7 knockout mice. Nevertheless, the genuine role of neuronal TLR7 in neural morphogenesis and brain function remains elusive. In this thesis, neuron-specific Tlr7 conditional knockout (cKO) mouse models, including Syn1-Cre-mediated Tlr7 cKO (Tlr7Syn1KO) mice and NEX-Cre-mediated Tlr7 cKO (Tlr7NEXKO) mice, and Golgi staining were employed to investigate the role of neuronal TLR7 in dendritic arborization of hippocampal CA1 neurons. The results of neuronal morphometry indicate that in comparison with their wild-type (WT) littermates, total dendrite length of CA1 neurons in Tlr7Syn1KO mice is indeed significantly longer. Though there is no statistically significant difference, total dendritic tip number of Tlr7Syn1KO neurons is also obviously more than WT neurons. However, dendritic growth of CA1 neurons in Tlr7NEXKO mice seems to be repressed compared with their NEXCre/+ littermates, and this result is totally opposite to our expectation. Owning to the fact that NEX-Cre allele in Tlr7NEXKO mice is a knock-in allele with disruption of original coding sequence of NEX gene, therefore the function of that NEX allele, the development of neurons may be impeded in those mice. Furthermore, abnormal behaviors related to anxiety are also observed in NEXCre/+ mice (data not shown). In contrast, Syn1-Cre allele in Tlr7Syn1KO mice is a transgenic allele without disruption of any coding sequence in the genome. Thus, it is possible that the quantification results of Tlr7NEXKO mice cannot reflect the real function of neuronal TLR7. Taken them all together, the results conclude that neuronal TLR7 exactly plays a key role and acts as a negative regulator in neuronal morphogenesis.
Acknowledgement i
Chinese Abstract iii
English Abstract v
Contents vi
I. Introduction 1
II. Materials & Methods 8
III. Results 16
IV. Discussion 23
V. Bibliography 28
VI. Figures & Tables 32
VII. Supplementary Information 43
Barak, B., Feldman, N., and Okun, E. (2014). Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Frontiers in Neuroscience 8.

Bsibsi, M., Ravid, R., Gveric, D., and van Noort, J.M. (2002). Broad expression of Toll-like receptors in the human central nervous system. Journal of neuropathology and experimental neurology 61, 1013-1021.

Cameron, J.S., Alexopoulou, L., Sloane, J.A., DiBernardo, A.B., Ma, Y., Kosaras, B., Flavell, R., Strittmatter, S.M., Volpe, J., Sidman, R., et al. (2007). Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 13033-13041.

Chen, C.Y., Liu, H.Y., and Hsueh, Y.P. (2017). TLR3 downregulates expression of schizophrenia gene Disc1 via MYD88 to control neuronal morphology. EMBO Reports 18, 169-183.

Delacour, A., Nepote, V., Trumpp, A., and Herrera, P.L. (2004). Nestin expression in pancreatic exocrine cell lineages. Mechanisms of development 121, 3-14.

Doerflinger, N.H., Macklin, W.B., and Popko, B. (2003). Inducible site-specific recombination in myelinating cells. Genesis (New York, NY : 2000) 35, 63-72.

Dubois, N.C., Hofmann, D., Kaloulis, K., Bishop, J.M., and Trumpp, A. (2006). Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, kidney, and somite-derived tissues. Genesis (New York, NY : 2000) 44, 355-360.

Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G.J., et al. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 109, E2110-2116.

Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G., and Sofroniew, M.V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature neuroscience 7, 1233-1241.

Giusti, S.A., Vercelli, C.A., Vogl, A.M., Kolarz, A.W., Pino, N.S., Deussing, J.M., and Refojo, D. (2014). Behavioral phenotyping of Nestin-Cre mice: implications for genetic mouse models of psychiatric disorders. Journal of psychiatric research 55, 87-95.

Harno, E., Cottrell, E.C., and White, A. (2013). Metabolic pitfalls of CNS Cre-based technology. Cell metabolism 18, 21-28.

Hartwich, H., Satheesh, S.V., and Nothwang, H.G. (2012). A pink mouse reports the switch from red to green fluorescence upon Cre-mediated recombination. BMC research notes 5, 296.

Hoesche, C., Sauerwald, A., Veh, R.W., Krippl, B., and Kilimann, M.W. (1993). The 5'-flanking region of the rat synapsin I gene directs neuron-specific and developmentally regulated reporter gene expression in transgenic mice. The Journal of biological chemistry 268, 26494-26502.

Kashani, A.H., Qiu, Z., Jurata, L., Lee, S.K., Pfaff, S., Goebbels, S., Nave, K.A., and Ghosh, A. (2006). Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 8398-8408.

Kaul, D., Habbel, P., Derkow, K., Kruger, C., Franzoni, E., Wulczyn, F.G., Bereswill, S., Nitsch, R., Schott, E., Veh, R., et al. (2012). Expression of Toll-like receptors in the developing brain. PloS one 7, e37767.

Kawasaki, T., and Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in immunology 5, 461.

Lathia, J.D., Okun, E., Tang, S.C., Griffioen, K., Cheng, A., Mughal, M.R., Laryea, G., Selvaraj, P.K., ffrench-Constant, C., Magnus, T., et al. (2008). Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 13978-13984.

Lehmann, S.M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., et al. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature neuroscience 15, 827-835.

Lehnardt, S. (2010). Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58, 253-263.

Leow-Dyke, S., Allen, C., Denes, A., Nilsson, O., Maysami, S., Bowie, A.G., Rothwell, N.J., and Pinteaux, E. (2012). Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. Journal of neuroinflammation 9, 230.

Liu, H.Y., Chen, C.Y., and Hsueh, Y.P. (2014). Innate immune responses regulate morphogenesis and degeneration: roles of Toll-like receptors and Sarm1 in neurons. Neuroscience bulletin 30, 645-654.

Liu, H.Y., Hong, Y.F., Huang, C.M., Chen, C.Y., Huang, T.N., and Hsueh, Y.P. (2013). TLR7 negatively regulates dendrite outgrowth through the Myd88-c-Fos-IL-6 pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 11479-11493.

Liu, H.Y., Huang, C.M., Hung, Y.F., and Hsueh, Y.P. (2015). The microRNAs Let7c and miR21 are recognized by neuronal Toll-like receptor 7 to restrict dendritic growth of neurons. Experimental neurology 269, 202-212.

Ma, Y., Haynes, R.L., Sidman, R.L., and Vartanian, T. (2007). TLR8: an innate immune receptor in brain, neurons and axons. Cell cycle (Georgetown, Tex) 6, 2859-2868.

Ma, Y., Li, J., Chiu, I., Wang, Y., Sloane, J.A., Lu, J., Kosaras, B., Sidman, R.L., Volpe, J.J., and Vartanian, T. (2006). Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. The Journal of cell biology 175, 209-215.

O'Neill, L.A., Golenbock, D., and Bowie, A.G. (2013). The history of Toll-like receptors - redefining innate immunity. Nature reviews Immunology 13, 453-460.

Okun, E., Barak, B., Saada-Madar, R., Rothman, S.M., Griffioen, K.J., Roberts, N., Castro, K., Mughal, M.R., Pita, M.A., Stranahan, A.M., et al. (2012). Evidence for a developmental role for TLR4 in learning and memory. PloS one 7, e47522.

Okun, E., Griffioen, K., Barak, B., Roberts, N.J., Castro, K., Pita, M.A., Cheng, A., Mughal, M.R., Wan, R., Ashery, U., et al. (2010). Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America 107, 15625-15630.

Olson, J.K., and Miller, S.D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of immunology (Baltimore, Md : 1950) 173, 3916-3924.

Orban, P.C., Chui, D., and Marth, J.D. (1992). Tissue- and site-specific DNA recombination in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 89, 6861-6865.

Rempe, D., Vangeison, G., Hamilton, J., Li, Y., Jepson, M., and Federoff, H.J. (2006). Synapsin I Cre transgene expression in male mice produces germline recombination in progeny. Genesis (New York, NY : 2000) 44, 44-49.

Rolls, A., Shechter, R., London, A., Ziv, Y., Ronen, A., Levy, R., and Schwartz, M. (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nature cell biology 9, 1081-1088.

Schwab, M.H., Bartholomae, A., Heimrich, B., Feldmeyer, D., Druffel-Augustin, S., Goebbels, S., Naya, F.J., Zhao, S., Frotscher, M., Tsai, M.J., et al. (2000). Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 3714-3724.

Schwab, M.H., Druffel-Augustin, S., Gass, P., Jung, M., Klugmann, M., Bartholomae, A., Rossner, M.J., and Nave, K.A. (1998). Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 1408-1418.

Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature genetics 21, 70-71.

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature reviews Neuroscience 9, 206-221.

Street, K.A., Xu, G., Hall, K.L., Intano, G.W., McCarrey, J.R., Herbert, D.C., Kilimann, M.W., and Walter, C.A. (2005). Rat synapsin 1 promoter mediated transgene expression in testicular cell types. DNA and cell biology 24, 133-140.

Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P.C., Bock, R., Klein, R., and Schutz, G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature genetics 23, 99-103.

Visser, L., Melief, M.J., van Riel, D., van Meurs, M., Sick, E.A., Inamura, S., Bajramovic, J.J., Amor, S., Hintzen, R.Q., Boven, L.A., et al. (2006). Phagocytes Containing a Disease-Promoting Toll-Like Receptor/Nod Ligand Are Present in the Brain during Demyelinating Disease in Primates. The American Journal of Pathology 169, 1671-1685.

Wu, S.X., Goebbels, S., Nakamura, K., Nakamura, K., Kometani, K., Minato, N., Kaneko, T., Nave, K.A., and Tamamaki, N. (2005). Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proceedings of the National Academy of Sciences of the United States of America 102, 17172-17177.

Yu, L., Wang, L., and Chen, S. (2010). Endogenous toll-like receptor ligands and their biological significance. Journal of cellular and molecular medicine 14, 2592-2603.

Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., and Parada, L.F. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes & development 15, 859-876.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top