跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅涵
研究生(外文):Ya-Han Chang
論文名稱:鋅離子和多巴胺造成大鼠多巴胺神經元退化機制之研究
論文名稱(外文):Study on Zn2+ and dopamine-induced degeneration of rat mesencephalic neurons
指導教授:高閬仙高閬仙引用關係
指導教授(外文):Lung-Sen Kao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:鋅離子多巴胺帕金森氏症
外文關鍵詞:ZincDopamineParkinson's Disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
帕金森氏症(Parkinson’s disease)是常見的一種神經退化性疾病。帕金森氏症病患有顫抖、身體僵直、運動遲緩等現象,並且無法自主行動,主要的病理特徵是位於人類中腦黑質緻密區中多巴胺神經元逐漸死亡。過去研究顯示氧化壓力的形成與多巴胺神經元的缺失有關聯性。多巴胺為神經傳導分子,很容易被氧化造成細胞內氧化壓力增加。另外,在帕金森氏症病患的腦部病理組織切片發現位於黑質緻密區的鋅離子含量有明顯增加的情形。本實驗室之前的研究顯示鋅離子與多巴胺造成的神經細胞死亡具有協同作用,並且在大鼠腦部紋狀體區域造成多巴胺減少的現象,但相關的分子機制仍未知。在本研究中我建立了一個初代大鼠中腦細胞培養模式系統。利用此模式發現鋅離子以及多巴胺共同處理時對於中腦神經細胞的死亡具有協同作用,同時造成中腦神經細胞的樹突產生不連續呈現點狀。在短時間內以低濃度的鋅離子以及多巴胺處理下,粒線體的移動速度以及數量有顯著減少,顯示粒線體的運輸受到損傷,可能為導致細胞死亡的原因之一。此外,神經元細胞核有不正常的萎縮,TUNEL染色結果顯示有將近一半的非多巴胺神經元會走向細胞凋亡,但多巴胺神經元並不會進行細胞凋亡。兩種抗氧化劑,乙酰半胱胺酸 (N-acetylcysteine, NAC)及麩胱甘肽(glutathione, GSH),對於鋅離子與多巴胺造成多巴胺神經元死亡具有保護作用,因而推測氧化壓力為鋅離子與多巴胺造成神經細胞死亡的主要原因之一。利用本研究所建立的大鼠中腦初代神經細胞可以確認之前以PC12細胞受鋅離子與多巴胺作用所造成的死亡為氧化壓力所造成的結果,結果顯示多巴胺神經元並不會進行細胞凋亡,以及粒線體的移動可能與神經細胞退化相關。
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. The main pathological hallmark of PD is pronounced loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and depletion of striatal dopamine (DA). However, the molecular mechanisms responsible for the loss of DA neurons remain unknown. Our previous study has shown that Zn2+ synergistically enhances dopamine-induced apoptotic cell death in PC12 cells, and cause DA depletion in the rat striatum, suggesting the roles of Zn2+/DA in the pathogenesis of PD. To examine the possible involvement of Zn2+/DA in the death of DA neurons in PD and its mechanisms, I established a primary rat mesencephalic culture model in this study. My results showed that Zn2+ combined with DA treatment caused a synergistic effect on the death of cultured rat mesencephalic cells and damage to neuronal processes. The mitochondrial transportation along the processes was inhibited upon Zn2+/DA treatment. The cell death induced by treatment of Zn2+ and DA is partially mediated by apoptosis in non-DA neurons but apoptosis was not found in DA-neurons. In addition, antioxidants, N-acetylcysteine (NAC) and glutathione (GSH), are able to rescue cells from the cell death induced by Zn2+/DA, suggesting that oxidative stress may be the main cause of neuronal death. My results from this study not only confirm the previous results obtained by PC12 cells but provide a further understanding of the mechanisms involved in the Zn2+/DA toxicity.
Table of Contents
中文摘要i
Abstract ii
Abbreviations iii
Table of Contents v
I. Introduction 1
1. Parkinson’s disease 1
2. Nigrostriatal dopaminergic pathway 1
3. Abnormal protein aggregation 2
4. Oxidative stress 2
5. Mitochondrial dysfunction 3
6. Dopamine 4
7. Zinc 5
8. Apoptosis:Type I cell death 6
9. Autophagy:Type II cell death 7
10. Necrosis:Type III cell death 8
II. Specific Aims 9
III. Materials and Methods 10
1. Materials 10
2. Primary cultures of rat mesencephalic neurons 10
3. Immunofluorescent staining (IF) 11
4. TUNEL assay 11
5. Time-lapse confocal imaging 12
6. Statistics 12
IV. Results 13
1. Establishment of a model to study the synergistic death by Zn2+ and DA 13
2. Zn2+ and DA caused synergistic death of cultured rat mesencephalic cells 13
3. The effects of Zn2+ and DA on the mitochondria transportation in the cultured rat mesencephalic cells 15
4. Cell death induced by treatment of Zn2+ and DA is partially mediated by apoptosis in non-DA neurons but not in DA-neurons 15
5. Antioxidants NAC and GSH inhibited the Zn2+- and DA-induced neurotoxicity in the cultured rat mesencephalic cells 16
V. Discussion 18
References 22
Figures 31
Fig. 1 Identification of rat embryonic mesencephalic neurons in DIV15. 31
Fig. 2 Glial cells in the rat mesencephalic culture at DIV15. 32
Fig. 3 DA neurons in the rat mesencephalic culture at DIV15. 33
Fig. 4 The effects of Zn2+ and DA on the induction of cell death in the cultured rat mesencephalic culture. 34
Fig. 5 The effects of Zn2+ and DA on the induction of DA neurons death in the cultured rat mesencephalic culture. 36
Fig. 6 The effects of Zn2+ and DA on the mitochondria transportation in the cultured rat mesencephalic cells. 38
Fig. 7 Zn2+/DA- induced death of non-DA neurons is partially mediated by apoptosis. 40
Fig. 8 The death pathways of DA neurons induced by Zn2+/DA are not mediated by apoptosis. 42
Fig. 9 The protective effect of NAC on the Zn2+- and DA-induced neurotoxicity. 44
Fig. 10 The protective effect of GSH on the Zn2+- and DA-induced neurotoxicity. 47
Appendix 1. Stages in the dissection of the ventral mesencephalon from the 14 day rat embryos. (Dunnetta and Björklundb, 1997). 50
Appendix 2. 51
Adamo, A.M., and Oteiza, P.I. (2010). Zinc deficiency and neurodevelopment: the case of neurons. BioFactors (Oxford, England) 36, 117-124.

Adamo, A.M., Zago, M.P., Mackenzie, G.G., Aimo, L., Keen, C.L., Keenan, A., and Oteiza, P.I. (2010). The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis. Neurotoxicity Research 17, 1-14.

Anglade, P., Vyas, S., Hirsch, E.C., and Agid, Y. (1997). Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histology and Histopathology 12, 603-610.


Assaf, S.Y., and Chung, S.H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734-736.

5. Beyersmann, D., and Haase, H. (2001). Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals : an international journal on the role of metal ions in biology, Biochemistry, and Medicine 14, 331-341.

Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., and Jackson-Lewis, V.R. (2015). Oxidative stress and Parkinson’s disease. Frontiers in Neuroanatomy 9, 91.

Blum, D., Torch, S., Lambeng, N., Nissou, M.-F., Benabid, A.-L., Sadoul, R., and Verna, J.-M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progress in Neurobiology 65, 135-172.

Bose, A., and Beal, M.F. (2016). Mitochondrial dysfunction in Parkinson’s disease. Journal of Neurochemistry 1, 216-231.

Bozzi, Y., and Borrelli, E. (2006). Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends in Neurosciences 29, 167-174.

Chaturvedi, R.K., and Beal, M.F. (2008). Mitochondrial approaches for neuroprotection. Annals of the New York Academy of Sciences 1147, 395-412.

Cheng, N., Maeda, T., Kume, T., Kaneko, S., Kochiyama, H., Akaike, A., Goshima, Y., and Misu, Y. (1996). Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Research 743, 278-283.

Chinta, S.J., Mallajosyula, J.K., Rane, A., and Andersen, J.K. (2010). Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters 486, 235-239.

Choi SJ, Panhelainen A, Schmitz Y, Larsen KE, Kanter E, Wu M, Sulzer D, Mosharov EV. (2015). Changes in neuronal dopamine homeostasis following 1-methyl-4-phenylpyridinium (MPP) exposure. Journal Biological Chemistry 290, 6799 –6809.

Chu, Y., Dodiya, H., Aebischer, P., Olanow, C.W., and Kordower, J.H. (2009). Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions. Neurobiology of Disease 35, 385-398.

Colamartino, M. , Padua, L. , Cornetta, T. , Testa, A. and Cozzi, R. (2012) Recent advances in pharmacological therapy of Parkinson’s disease: Levodopa and carbidopa protective effects against DNA oxidative damage. Health 4, 1191-1199.

Cuajungco, M.P., and Lees, G.J. (1997). Zinc and Alzheimer's disease: is there a direct link? Brain Research Reviews 23, 219-236.

Dauer, W., and Przedborski, S. (2003). Parkinson's Disease: Mechanisms and Models. Neuron 39, 889-909.

Eibl, J.K., Abdallah, Z., and Ross, G.M. (2010). Zinc–metallothionein: a potential mediator of antioxidant defence mechanisms in response to dopamine-induced stressThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Canadian Journal of Physiology and Pharmacology 88, 305-312.


Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology 35, 495-516.

Farrer, M.J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Reviews Genetics 7, 306.

Giménez-Xavier, P., Francisco, R., Santidrian, A.F., Gil, J., and Ambrosio, S. (2009). Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology 30, 658-665.

Greenamyre, J.T., Cannon, J.R., Drolet, R., and Mastroberardino, P.G. (2010). Lessons from the rotenone model of Parkinson's disease. Trends in Pharmacological Sciences 31, 141-142.

GrÖger, A., Kolb, R., Schafer, R., and Klose, U. (2014). Dopamine reduction in the substantia nigra of Parkinson's disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PloS One 9, e84081.

Guo, J.D., Zhao, X., Li, Y., Li, G.R., and Liu, X.L. (2018). Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). International Journal of Molecular Medicine 41, 1817-1825.

Hardy, J. (2010). Genetic Analysis of Pathways to Parkinson Disease. Neuron 68, 201-206.

Hartmann, A., Hunot, S., Michel, P.P., Muriel, M.P., Vyas, S., Faucheux, B.A., Mouatt-Prigent, A., Turmel, H., Srinivasan, A., Ruberg, M., et al. (2000). Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 97, 2875-2880.

Hartley, A., Stone, J.M., Heron, C., Cooper, J.M. and Schapira, A.H. (1994). Complex I inhibitors induce dose-dependent apoptosis in PC12 cells, Journal of Neurochemistry 63, 1987-1990.


Hegarty, S.V., Sullivan, A.M., and O'Keeffe, G.W. (2013). Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Developmental Biology 379, 123-138.

Hunn, B.H.M., Cragg, S.J., Bolam, J.P., Spillantini, M.-G., and Wade-Martins, R. (2015). Impaired intracellular trafficking defines early Parkinson's disease. Trends in Neurosciences 38, 178-188.

Hung, HH., Huang, WP. & Pan, CY. Cell Biol Toxicol (2013). Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival 29: 415.

Hwang, O. (2013). Role of oxidative stress in Parkinson's disease. Experimental Neurobiology 22, 11-17.

Irwin, D.J., Lee, V.M.Y., and Trojanowski, J.Q. (2013). Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nature Reviews Neuroscience 14, 626.

Jenner, P. (2003). Oxidative stress in Parkinson's disease. Annals of neurology 53 Suppl 3, S26-36; discussion S36-28.

Johnson, J.L., and Aprison, M.H. (1971). The distribution of glutamate and total free amino acids in thirteen specific regions of the cat central nervous system. Brain Research 26, 141-148.

Jones, D.C., Gunasekar, P.G., Borowitz, J.L., and Isom, G.E. (2000). Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells. Journal of Neurochemistry 74, 2296-2304.



Kerksick, C., and Willoughby, D. (2005). The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. Journal of the International Society of Sports Nutrition 2, 38-44.

Kim, Y.H., Kim, E.Y., Gwag, B.J., Sohn, S., and Koh, J.Y. (1999). Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 89, 175-182.

Kurokawa, M., and Kornbluth, S. (2009). Caspases and Kinases in a Death Grip. Cell 138, 838-854.

LaVoie, M.J., Ostaszewski, B.L., Weihofen, A., Schlossmacher, M.G., and Selkoe, D.J. (2005). Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine 11, 1214.

Lee, J.-Y., Hwang, J.J., Park, M.-H., and Koh, J.Y. (2006). Cytosolic labile zinc: A marker for apoptosis in the developing rat brain. European Journal of Neuroscience 23. 435-442.
Lee, J.-Y., Son, H.J., Choi, J.H., Cho, E., Kim, J., Chung, S.J., Hwang, O., and Koh, J.-Y. (2009). Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment. Brain Research 12, 208-214.

Liu, S., Sawada, T., Lee, S., Yu, W., Silverio, G., Alapatt, P., Millan, I., Shen, A., Saxton, W., Kanao, T. (2012). Parkinson's Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria. PLOS Genetics 8, 3.

Lo, H.-S., Chiang, H.-C., Lin, A.M.Y., Chiang, H.-Y., Chu, Y.-C., and Kao, L.-S. (2004). Synergistic effects of dopamine and Zn2+ on the induction of PC12 cell death and dopamine depletion in the striatum: possible implication in the pathogenesis of Parkinson's disease. Neurobiology of Disease 17, 54-61.


Lotharius, J., and Brundin, P. (2002). Pathogenesis of parkinson’s disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience. 3, 932.
McCoy, M.K., and Cookson, M.R. (2011). DJ-1 regulation of mitochondrial function and autophagy through oxidative stress. Autophagy 7, 531-532.

Montes, S., Rivera-Mancia, S., Diaz-Ruiz, A., Tristan-Lopez, L., and Rios, C. (2014). Copper and Copper Proteins in Parkinson’s Disease. Oxidative Medicine and Cellular Longevity 2014, 15.

Moon, H.E., and Paek, S.H. (2015). Mitochondrial Dysfunction in Parkinson's Disease. Experimental Neurobiology 24, 103-116.

Novikova, L., Garris, B.L., Garris, D.R., and Lau, Y.S. (2006). Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease. Neuroscience 140, 67-76.

Reeve, A.K., Grady, J.P., Cosgrave, E.M., Bennison, E., Chen, C., Hepplewhite, P.D., and Morris, C.M. (2018). Mitochondrial dysfunction within the synapses of substantia
nigra neurons in Parkinson’s disease. Parkinson's Disease 4, 9.

Rodriguez-Oroz, M.C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., and Obeso, J.A. (2009). Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. The Lancet Neurology 8, 1128-1139.
Iannielli, A., Bido, S., Folladori, L., Segnali, A., Cancellieri, C., Maresca, A., Massimino, L., Rubio, A., Morabito, G., Caporali, L., Tagliavini, F., Musumeci, O., Gregato, G., Bezard, E., Carelli, V., Tiranti, V., Broccoli, V. (2018). Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models. Cell Report 22, 2066-2079.

Schapira AHV, Gu M, Tanman J-W, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM. (1998). Mitochondria in the etiology and pathogenesis of Parkinson's disease. Annals Neurology 44, 89-98.


Sensi, S.L., Paoletti, P., Bush, A.I., and Sekler, I. (2009). Zinc in the physiology and pathology of the CNS. Nature Reviews Neuroscience 10, 780.

Shinkai, T., Zhang, L., Mathias, S.A. and Roth, G.S. (1997). Dopamine induces apoptosis in cultured rat striatal neurons; possible mechanism of D2-dopamine receptor neuron loss during aging. Journal of Neuroscience Research 47, 393–399.

Shlevkov, E., and Schwarz, T.L. (2017). Parkinson's Disease Molecular Mechanisms Underlying Pathology : Chapter 4 - Axonal Mitochondrial Transport. Academic Press 113-137.

Singh, S., Kumar, S., and Dikshit, M. (2010). Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox report : communications in free radical research 15, 115-122.

Spencer, J.P., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C., and Halliwell, B. (1998). Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. Journal of Neurochemistry 71, 2112-2122.

Thomas, K.J., McCoy, M.K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., Miller, D., Maric, D., Cedazo-Minguez, A., and Cookson, M.R. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Human Molecular Genetics 20, 40-50.

Toth, K. (2011). Zinc in Neurotransmission. Annual Review Nutrition 31,139–53.

Trinh, J. and Farrer, M. (2013). Advances in the genetics of Parkinson disease. Nature Review Neurol 9, 445–454.

Wang, H., Wang, M., Wang, B., Li, M., Chen, H., Yu, X., Zhao, Y., Feng, W., and Chai, Z. (Hunn). The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer's disease. Metallomics 4, 289-296.

Yang, T.C., Wu, P.C., Chung, I.F., Jiang, J.H., Fann, M.J., and Kao, L.S. (2016). Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b - implication in the pathogenesis of Parkinson's disease. Journal of Neurochemistry 139, 120-133.

Yu, W.R., Jiang, H., Wang, J., Xie, J.X. (2008). Peripheral zinc (ZN2+) induced dopaminergic neurons apoptosis in the nigrostriatal system of rats. Cell Biology International 32, S11-S12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊