|
1. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7. 2. Solter, D. and B.B. Knowles, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A, 1978. 75(11): p. 5565-9. 3. Kannagi, R., et al., Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J, 1983. 2(12): p. 2355-61. 4. Kannagi, R., et al., New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem, 1983. 258(14): p. 8934-42. 5. Hakomori, S.I., Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta, 2008. 1780(3): p. 325-46. 6. Svennerholm, L., Chromatographic Separation of Human Brain Gangliosides. J Neurochem, 1963. 10: p. 613-23. 7. Hakomori, S.I., Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett, 2010. 584(9): p. 1901-6. 8. Yu, R.K., Development regulation of ganglioside metabolism. Prog Brain Res, 1994. 101: p. 31-44. 9. Yu, R.K., et al., Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem, 1988. 50(6): p. 1825-9. 10. Prinetti, A., et al., Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta, 2009. 1788(1): p. 184-93. 11. Sonnino, S. and A. Prinetti, Sphingolipids and membrane environments for caveolin. FEBS Lett, 2009. 583(4): p. 597-606. 12. Guan, F., K. Handa, and S.I. Hakomori, Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7461-6. 13. Guan, F., et al., Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-{beta}. FASEB J, 2010. 24(12): p. 4889-903. 14. Pankratz, M.T., et al., Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells, 2007. 25(6): p. 1511-20. 15. Cho, M.S., et al., Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A, 2008. 105(9): p. 3392-7. 16. Cai, J., et al., Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 2007. 45(5): p. 1229-39. 17. Ciucanu, I. and F. Kerek, A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 1984. 131(2): p. 209-217. 18. Mestdagh, P., et al., A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol, 2009. 10(6): p. R64. 19. Lewis, S.L. and P.P. Tam, Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn, 2006. 235(9): p. 2315-29. 20. The Global Cancer Observatory. Cancer Today. 2016 [cited 2017 September]; Available from: http://gco.iarc.fr/. 21. Health promotion administration ministry of health and welfare Taiwan, Cancer registry annual report 2014 Taiwan. 2016. 22. Yang, J.D. and L.R. Roberts, Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol, 2010. 7(8): p. 448-58. 23. El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012. 142(6): p. 1264-1273 e1. 24. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. Lancet, 2012. 379(9822): p. 1245-55. 25. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, I.A.f.R.o.C., Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. Vol. 82. 2002, Lyon, France. 26. McGlynn, K.A. and W.T. London, The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis, 2011. 15(2): p. 223-43, vii-x. 27. Debelle, F.D., J.L. Vanherweghem, and J.L. Nortier, Aristolochic acid nephropathy: a worldwide problem. Kidney Int, 2008. 74(2): p. 158-69. 28. Ng, A.W.T., et al., Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Science Translational Medicine, 2017. 9(412). 29. Mazzaferro, V., et al., Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med, 1996. 334(11): p. 693-9. 30. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90. 31. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34. 32. Bruix, J., et al., Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet, 2017. 389(10064): p. 56-66. 33. Cabibbo, G., et al., A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology, 2010. 51(4): p. 1274-83. 34. Sapisochin, G. and J. Bruix, Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. Nat Rev Gastroenterol Hepatol, 2017. 14(4): p. 203-217. 35. Colecchia, A., et al., Prognostic factors for hepatocellular carcinoma recurrence. World J Gastroenterol, 2014. 20(20): p. 5935-50. 36. Lee, S.C., H.T. Tan, and M.C. Chung, Prognostic biomarkers for prediction of recurrence of hepatocellular carcinoma: current status and future prospects. World J Gastroenterol, 2014. 20(12): p. 3112-24. 37. Varki, A., et al., Glycosylation Changes in Cancer, in Essentials of Glycobiology [Internet]. 3rd edition., C.R. Varki A, Esko JD, et al.,, Editor. 2017, Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY). 38. Hakomori, S. and R. Kannagi, Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst, 1983. 71(2): p. 231-51. 39. Kannagi, R., et al., Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants--Hakomori's concepts revisited. Biochim Biophys Acta, 2008. 1780(3): p. 525-31. 40. Dennis, J.W., et al., Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science, 1987. 236(4801): p. 582-5. 41. Kumamoto, K., et al., Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res, 2001. 61(11): p. 4620-7. 42. Kellokumpu, S., R. Sormunen, and I. Kellokumpu, Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett, 2002. 516(1-3): p. 217-24. 43. Fuster, M.M. and J.D. Esko, The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer, 2005. 5(7): p. 526-42. 44. Mehta, A., et al., Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol Biomarkers Prev, 2012. 21(6): p. 925-33. 45. Nie, H., et al., Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-alpha-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation. Sci Rep, 2015. 5: p. 16007. 46. Zhu, J., et al., Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int, 2014. 34(1): p. 147-60. 47. Souady, J., et al., Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology, 2011. 21(5): p. 584-94. 48. Zhou, D., et al., The beta 1,3-galactosyltransferase beta 3GalT-V is a stage-specific embryonic antigen-3 (SSEA-3) synthase. J Biol Chem, 2000. 275(30): p. 22631-4. 49. Saito, S., et al., Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem, 2003. 278(29): p. 26474-9. 50. Chang, W.W., et al., Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11667-72. 51. Muramatsu, T. and H. Muramatsu, Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J, 2004. 21(1-2): p. 41-5. 52. Suzuki, Y., et al., SSEA-3 as a novel amplifying cancer cell surface marker in colorectal cancers. Int J Oncol, 2013. 42(1): p. 161-7. 53. Saito, S., et al., Expression of globo-series gangliosides in human renal cell carcinoma. Jpn J Cancer Res, 1997. 88(7): p. 652-9. 54. Noto, Z., et al., CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol, 2013. 49(8): p. 787-95. 55. Lou, Y.W., et al., Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A, 2014. 111(7): p. 2482-7. 56. Gottschling, S., et al., Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. Eur Respir J, 2013. 41(3): p. 656-63. 57. Bremer, E.G., et al., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. J Biol Chem, 1984. 259(23): p. 14773-7. 58. Zhang, S., et al., Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer, 1997. 73(1): p. 42-9. 59. Xu, X.L., et al., The properties of tumor-initiating cells from a hepatocellular carcinoma patient's primary and recurrent tumor. Carcinogenesis, 2010. 31(2): p. 167-74. 60. Wu, C.S., et al., Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma proliferation via fucosyltransferase 2-induced Globo H expression. Int J Cancer, 2014. 134(7): p. 1638-47. 61. Berois, N., et al., GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem, 2013. 59(1): p. 225-33. 62. Chang, H.H., et al., beta-1,4-Galactosyltransferase III enhances invasive phenotypes via beta1-integrin and predicts poor prognosis in neuroblastoma. Clin Cancer Res, 2013. 19(7): p. 1705-16. 63. Ho, W.L., et al., GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma. Oncotarget, 2014. 5(23): p. 12247-59. 64. Bai, Q., et al., Prognostic significance of ST3GAL-1 expression in patients with clear cell renal cell carcinoma. BMC Cancer, 2015. 15: p. 880. 65. Gonzalez-Vallinas, M., et al., Clinical relevance of the differential expression of the glycosyltransferase gene GCNT3 in colon cancer. Eur J Cancer, 2015. 51(1): p. 1-8. 66. Honma, R., et al., Expression of fucosyltransferase 8 is associated with an unfavorable clinical outcome in non-small cell lung cancers. Oncology, 2015. 88(5): p. 298-308. 67. Smith, D.F. and P.A. Prieto, Special considerations for glycolipids and their purification. Curr Protoc Mol Biol, 2001. Chapter 17: p. Unit17.3. 68. Jing, Y., et al., Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One, 2012. 7(8): p. e43272. 69. Wang, C.C., et al., Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11661-6. 70. Sun, J., et al., Elevated expression of H type GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5724-8. 71. Goupille, C., et al., alpha1,2Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells. Glycobiology, 2000. 10(4): p. 375-82. 72. Tan, K.P., et al., Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells. Cell Death Dis, 2016. 7(8): p. e2347. 73. Zhang, Z., et al., Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. Biochim Biophys Acta, 2008. 1783(2): p. 287-96. 74. Goupille, C., et al., Increase of rat colon carcinoma cells tumorigenicity by alpha(1-2) fucosyltransferase gene transfection. Glycobiology, 1997. 7(2): p. 221-9. 75. Amin, M.A., et al., A key role for Fut1-regulated angiogenesis and ICAM-1 expression in K/BxN arthritis. Ann Rheum Dis, 2015. 74(7): p. 1459-66. 76. Milde-Langosch, K., et al., Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res Treat, 2014. 145(2): p. 295-305. 77. Mathieu, S., et al., Introducing alpha(1,2)-linked fucose into hepatocarcinoma cells inhibits vasculogenesis and tumor growth. Int J Cancer, 2007. 121(8): p. 1680-9. 78. Lopez-Terrada, D., et al., Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol, 2009. 40(10): p. 1512-5. 79. Hayashi, N., et al., Association between expression levels of CA 19-9 and N-acetylglucosamine-beta;1,3-galactosyltransferase 5 gene in human pancreatic cancer tissue. Pathobiology, 2004. 71(1): p. 26-34. 80. Isshiki, S., et al., Cloning, expression, and characterization of a novel UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. J Biol Chem, 1999. 274(18): p. 12499-507. 81. Kannagi, R., et al., Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci, 2004. 95(5): p. 377-84. 82. Chung, T.W., et al., Hepatitis B virus X protein specially regulates the sialyl lewis a synthesis among glycosylation events for metastasis. Mol Cancer, 2014. 13: p. 222. 83. Skrbo, N., et al., Differential in vivo tumorigenicity of distinct subpopulations from a luminal-like breast cancer xenograft. PLoS One, 2014. 9(11): p. e113278. 84. Yang, H.J., et al., Inhibition of ganglioside GD1a synthesis suppresses the differentiation of human mesenchymal stem cells into osteoblasts. Dev Growth Differ, 2011. 53(3): p. 323-32. 85. Berasain, C., et al., The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med (Maywood), 2009. 234(7): p. 713-25. 86. Aloia, A., et al., The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Res, 2015. 17(1): p. 146. 87. Cheung, S.K., et al., Stage-specific embryonic antigen-3 (SSEA-3) and beta3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A, 2016. 113(4): p. 960-5. 88. Steelant, W.F., et al., Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett, 2002. 531(1): p. 93-8. 89. Cheng, J.Y., et al., Globo-H ceramide shed from cancer cells triggers translin-associated factor X-dependent angiogenesis. Cancer Res, 2014. 74(23): p. 6856-66. 90. Tsai, Y.-C., et al., A Prevalent Cancer Associated Glycan, Globo H Ceramide, Induces Immunosuppression by Reducing Notch1 Signaling. Journal of Cancer Science & Therapy, 2013. 05(07). 91. Yu, A.L., et al., Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev, 2016. 92. Wu, C.S., et al., Cancer-associated carbohydrate antigens as potential biomarkers for hepatocellular carcinoma. PLoS One, 2012. 7(7): p. e39466. 93. Pochechueva, T., et al., Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients. PLoS One, 2016. 11(10): p. e0164230. 94. Jacob, F., et al., Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer, 2012. 130(1): p. 138-46. 95. Pochechueva, T., et al., Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients. J Ovarian Res, 2017. 10(1): p. 8.
|