(3.215.180.226) 您好!臺灣時間:2021/03/06 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李芯如
研究生(外文):Hsin-Ju Lee
論文名稱:主動式與被動式的調整過程如何影響動作抑制的認知神經機制:以獎賞為調節因子
論文名稱(外文):Investigating proactive and reactive modulation of reward on action inhibitory control
指導教授:郭文瑞郭文瑞引用關係
指導教授(外文):Wen-Jui Kuo
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:88
中文關鍵詞:抑制控制停止信號任務功能性磁振造影技術獎賞主動式調整機制被動式修正過程
外文關鍵詞:inhibitory controlstop-signal taskfunctional Magnetic Resonance Imaging (fMRI)rewardproactive controlreactive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
人類為求生存及適應環境變化,發展出可根據少量訊息而預先調整策略的主動式調整過程(proactive modulation)。主動式調整機制策略性地整合認知運作,以最有效的方式產生目標導向行為,並且早在個體形成預期或制定目標時就已經介入,持續運作直到目標達成為止。相較於單純因應外界干擾而啟動的被動式修正過程(reactive modulation),主動式調整機制持續時間較長,且影響層面更大。

良好的抑制控制需要協調主動式調整過程和被動式修正過程的運作,才能有效地產生目標導向行為。因此,本研究利用獎賞作為誘因,並結合停止信號任務來評估動作抑制的主動式和被動式調整過程。同時,我們以功能性磁振造影技術掃描受試者在執行作業時的大腦活化情形。實驗一的結果顯示,以獎賞為誘因提高受試者完成作業的動機時,主動式調整機制透過前輔助運動區(pre-supplementary motor area/pre-SMA)和尾狀核(caudate)影響動作反應歷程的執行。在實驗二,我們透過預期之外的獎賞影響受試者的情感反應。我們發現當意外獎賞的呈現可促進抑制控制的執行效率;功能性磁振造影結果表明,獎賞會立即性地大幅增強作業相關歷程的活動。進一步聚焦於抑制控制的神經迴路,我們發現前輔助運動區(pre-SMA)和右側額下回(right inferior frontal gyrus/rIFG)的活動可反映抑制控制的改善程度,但其影響機制取決於獎賞的內容。綜合以上結果顯示,由獎勵誘發的情感反應持續時間短暫,控制過程較趨近被動式調整機制,其效果並可展現在抑制控制的效率;若獎勵誘發的情感反應較長,如動機,則調整機制以主動式為止。
Effective action inhibition needs a good balance of proactive and reactive control. Previous studies have used the stop-signal task to assess and evaluate proactive and reactive control for action inhibition. However, the picture that how neural mechanisms underlying these two types of control work for action inhibition is not completed yet. In this study, we use fMRI to examine neural underpinnings of (1) how proactive and reactive control works in concert to inhibit an action already planned when motivated and (2) how induced positive and negative affects exert their influence to proactive and reactive control for inhibiting an upcoming action.

In Experiment 1, using reward anticipation in a stop-signal task, the motivational effects on inhibitory control was investigated. Our behavioral data supported that motivation introduces a new balance between fast response and accurate stopping. The fMRI findings back up the behavioral results. First, the frontoparietal network is involved in the establishment of balance. Next, we found motivation effects in the anterior caudate and pre-supplementary motor area (pre-SMA) for action inhibition. The former works to register motivation status, while the latter works to transform motivation into action inhibition control. The connectivity analysis indicated that the pre-SMA shows a stronger coupling with the right inferior frontal cortex (rIFG) when rewarding. Combined with the correlation of stop-signal reaction time (SSRT) and rIFG activity was disrupted in the condition with reward anticipation, we suggested a hierarchical relationship between functional roles of pre-SMA and rIFG during action inhibition. While the pre-SMA respond to proactive preparation to accommodate higher-order factors, such as motivation, for action control, the rIFG acts to participate in the execution of action inhibition.

In Experiment 2, by presenting an accidental reward before a stop trial, we examined how affective responses evoked by different rewards influence inhibition control in a stop signal task. We found that SSRT reduction under both positive and negative reward conditions, as compared to the neutral condition. The fMRI results demonstrated activities in wide-spread brain regions were enhanced by reward, encompassing brain regions of visual perception, attention control, valuation, and inhibitory control. Activities in most regions were insensitive to valence polarity, suggesting bottom-up attentional deployment due to reward salience. ROI analysis revealed functional segregation in the dorsal and ventral part of medial striatum. While the ventral side encodes the reward valences, the dorsal part represents current demand of environments. Finally, we correlated the SSRT reduction with the regional activity extracted from rIFG and right pre-SMA. For the former, there was positive correlation in the PR condition. For the latter, however, there was positive correlation in the NR condition. Therefore, positive and negative rewards can affect action inhibition to a similar extent, but through different pathways.

To conclude, motivation and affects induced by rewards can exert their influence on action inhibition control. Anatomically, while the function of the rIFG is closer to reactive inhibition, the role of pre-SMA is more responsive to proactive control.
Table of contents
致謝 ................................................................................i
中文摘要 ..........................................................................ii
Abstract .........................................................................iii
Table of contents .............................................................v
List of figures .................................................................vii
List of tables ..................................................................viii
Chapter 1 Motivation and significance .............................1
Chapter 2 Literature review ..............................................4
2.1 Stop-signal task and go/no-go task ............................4
2.2 Horse race model ........................................................5
2.3 Reactive and proactive inhibitory control ...................9
2.4 Neural mechanisms of inhibitory control ..................13
2.4.1 Basal ganglia pathways ..........................................13
2.4.2 Cortical regions recruited in inhibitory control ......16
Chapter 3 Specific aims ...................................................21
3.1 Aims of the first experiment and its hypotheses ........22
3.2 Aims of the second experiment and its hypotheses ...23
Chapter 4 Experiment 1 ...................................................24
Proactive modulation from motivation induced by reward anticipation
4.1 Methods ....................................................................24
4.2 Results ......................................................................30
4.3 Discussion .................................................................40
Chapter 5 Experiment 2 ..................................................47
Examining the effect of accidental reward preceding a stop-signal
5.1 Methods ....................................................................47
5.2 Results ......................................................................53
5.3 Discussion .................................................................62
Chapter 6 General discussion .........................................69
Reference .......................................................................71

Figures
Chapter 2
Figure 2.1 Stop-signal task ..............................................5
Figure 2.2 Horse race model ............................................7
Figure 2.3 Fronto-basal-ganglia circuitry .......................15
Chapter 4
Figure 4.1 Experimental design ......................................26
Figure 4.2 Main effects for the GO and stop-trials in the low-motivation situation ......................................................32
Figure 4.3 Motivation modulation over the GO ..............33
Figure 4.4 Motivation effects over the
stopping processing ......................................................34
Figure 4.5 Correlation between SSRTs and
regional BOLD signals ...................................................37
Figure 4.6 PPI results ....................................................39
Chapter 5
Figure 5.1 Trial procedure ............................................48
Figure 5.2 Effects of reward on the SSTs ......................56
Figure 5.3 ROI results ...................................................60
Figure 5.4 Across subjects' brain-behavior
correlations .................................................................61
Figure 5.5 A merged ROI and the functional gradient in the medial striatum ......................................................................62

Tables
Chapter 2
Table 2.1 Summary of relevant studies investigating proactive and reactive inhibitory control ..........................................11
Chapter 4
Table 4.1 Descriptive statistics for Go and Stop trials across motivation states ........................................................31
Table 4.2 Summary of significant activations associated with the motivation modulation ...............................................35
Table 4.3 Pre-SMA seeded PPI results ........................40
Chapter 5
Table 5.1 Behavior data and statistical tests for Go and Stop trials among feedback conditions ......................................54
Table 5.2 Summary of significant activations associated with the PR enhancements ...........................................................57
Table 5.3 Summary of significant activations associated with the NR enhancements ...........................................................58
Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature neuroscience, 14(10), 1338-1344. doi: 10.1038/nn.2921
Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-68. doi: 10.1016/j.biopsych.2010.07.024
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14), 3743-3752. doi: 10.1523/JNEUROSCI.0519-07.2007
Aron, A. R., Cai, W., Badre, D., & Robbins, T. W. (2015). Evidence supports specific braking function for inferior PFC. Trends in cognitive sciences, 19, 711-712. doi: 10.1016/j.tics.2015.09.001
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27(44), 11860-11864. doi: 10.1523/JNEUROSCI.3644-07.2007
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature neuroscience, 6(2), 115-116. doi: 10.1038/nn1003
Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. Journal of Neuroscience, 26(9), 2424-2433. doi: 10.1523/JNEUROSCI.4682-05.2006
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences, 18(4), 177-185. doi: 10.1016/j.tics.2013.12.003
Avila, C., & Parcet, M. A. (2001). Personality and inhibitory deficits in the stop-signal task: The mediating role of Gray’s anxiety and impulsivity. Personality and Individual Differences, 31(6), 975-986. doi: 10.1016/S0191-8869(00)00199-9
Balleine, B. W., & O'Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48-69. doi: 10.1038/npp.2009.131
Band, G. P., Van Der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of the stop-signal procedure. Acta psychologica, 112(2), 105-142. doi: 10.1016/S0001-6918(02)00079-3
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in neurobiology, 108, 44-79. doi: 10.1016/j.pneurobio.2013.06.005
Boehler, C. N., Hopf, J. M., Stoppel, C. M., & Krebs, R. M. (2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125(3), 498-503. doi: 10.1016/j.cognition.2012.07.018
Boehler, C. N., Schevernels, H., Hopf, J. M., Stoppel, C. M., & Krebs, R. M. (2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 593-609. doi: 10.3758/s13415-014-0251-5
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., Li, W.,Parrish, T. B., Gitelman, D. R.,& Marsel Mesulam, M. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46(1), 94-111. doi: 10.1111/j.1469-7610.2004.00337.x
Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychological review, 114(2), 376. doi: 10.1037/0033-295X.114.2.376
Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in cognitive sciences, 16(2), 106-113. doi: 10.1016/j.tics.2011.12.010
Brittain, J. S., Watkins, K. E., Joundi, R. A., Ray, N. J., Holland, P., Green, A. L., Aziz, T. Z., & Jenkinson, N. (2012). A role for the subthalamic nucleus in response inhibition during conflict. Journal of Neuroscience, 32(39), 13396-13401. doi: 10.1523/JNEUROSCI.2259-12.2012
Cai, W., George, J. S., Verbruggen, F., Chambers, C. D., & Aron, A. R. (2012). The role of the right presupplementary motor area in stopping action: two studies with event-related transcranial magnetic stimulation. Journal of neurophysiology, 108(2), 380-389. doi: 10.1152/jn.00132.2012
Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., & Di Filippo, M. (2014). Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature neuroscience, 17(8), 1022-1030. doi: 10.1038/nn.3743
Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5497-5502. doi: 10.1073/pnas.0935845100
Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature neuroscience, 14(11), 1462-1467. doi: 10.1038/nn.2925
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & biobehavioral reviews, 33(5), 631-646. doi: 10.1016/j.neubiorev.2008.08.016
Chen, C. Y., Muggleton, N. G., Juan, C. H., Tzeng, O. J. , & Hung, D. L. (2008). Time pressure leads to inhibitory control deficits in impulsive violent offenders. Behavioural brain research, 187(2), 483-488. doi: 10.1016/j.bbr.2007.10.011
Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., & Konishi, S. (2009). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. Journal of Neuroscience, 29(50), 15870-15877. doi: 10.1523/JNEUROSCI.3645-09.2009
Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Canli, T. , & Poldrack, R. A. (2012). Measurement and reliability of response inhibition. Frontiers in psychology, 3, 37. doi: 10.3389/fpsyg.2012.00037
Coxon, J. P., Van Impe, A., Wenderoth, N., & Swinnen, S. P. (2012). Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. Journal of Neuroscience, 32(24), 8401-8412. doi: 10.1523/JNEUROSCI.6360-11.2012
Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. . (2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PloS one, 9(11), e113537. doi: 10.1371/journal.pone.0113537
Danek, R. H., & Mordkoff, J. T. (2011). Unequal motor durations under simple-, go/no-go, and choice-RT tasks: Extension of Miller and Low (2001). Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1323. doi: 10.1037/a0023092
Delgado, M. R. (2007). Reward‐related responses in the human striatum. Annals of the New York Academy of Sciences, 1104(1), 70-88. doi: 10.1196/annals.1390.002
Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: Meta‐analyses of switching and Stroop studies. Human brain mapping, 25(1), 22-34. doi: 10.1002/hbm.20127
Duann, J. R., Ide, J. S., Luo, X., & Li, C. S. (2009). Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. Journal of Neuroscience, 29(32), 10171-10179. doi: 10.1523/JNEUROSCI.1300-09.2009
Erika-Florence, M., Leech, R., & Hampshire, . (2014). A functional network perspective on response inhibition and attentional control. Nature communications, 5. doi: 10.1038/ncomms5073
Esterman, M., Tamber-Rosenau, B. J., Chiu, Y. C., & Yantis, S. . (2010). Avoiding non-independence in fMRI data analysis: leave one subject out. Neuroimage, 50(2), 572-576. doi: 10.1016/j.neuroimage.2009.10.092
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in cognitive sciences, 15(2), 85-93. doi: 10.1016/j.tics.2010.11.004
Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J. , Brown, S., Wagenmakers, E. J., Bogacz, R., & Turner, R. (2010). Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15916-15920. doi: 10.1073/pnas.1004932107
Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., Von Cramon, D. Y., Ridderinkhof, K. R., & Wagenmakers, E. J. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17538-17542. doi: 10.1073/pnas.0805903105
Forstmann, B. U., Jahfari, S., Scholte, H. S., Wolfensteller, U., van den Wildenberg, W. P., & Ridderinkhof, K. R. (2008). Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach. Journal of Neuroscience, 28(39), 9790-9796. doi: 10.1523/JNEUROSCI.1465-08.2008
Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D., & Kreitzer, A. C. (2013). Control of basal ganglia output by direct and indirect pathway projection neurons. Journal of Neuroscience, 33(47), 18531-18539. doi: 10.1523/JNEUROSCI.1278-13.2013
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of experimental psychology: General, 133(1), 101. doi: 10.1037/0096-3445.133.1.101
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. doi: 10.1006/nimg.1997.0291
Galvan, A., Poldrack, R. A., Baker, C. M., McGlennen, K. M., & London, E. D. (2011). Neural correlates of response inhibition and cigarette smoking in late adolescence. Neuropsychopharmacology, 36(5), 970-978. doi: 10.1038/npp.2010.235
Gauggel, S., Rieger, M., & Feghoff, T. A. (2004). Inhibition of ongoing responses in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 75(4), 539-544. doi: 10.1136/jnnp.2003.016469
Gillies, AJ, & Willshaw, DJ. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Royal Society of London B: Biological Sciences, 265(1410), 2101-2109. doi: 10.1098/rspb.1998.0546
Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826-1831.
Greenhouse, I., Oldenkamp, C. L., & Aron, A. R. (2011). Stopping a response has global or nonglobal effects on the motor system depending on preparation. Journal of neurophysiology, 107(1), 384-392. doi: 10.1152/jn.00704.2011
Greenhouse, I., & Wessel, J. R. (2013). EEG signatures associated with stopping are sensitive to preparation. Psychophysiology, 50(9), 900-908. doi: 10.1111/psyp.12070
Groenewegen, H. J., Wright, C. I., Beijer, A. V., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York academy of sciences, 877(1), 49-63. doi: 10.1111/j.1749-6632.1999.tb09260.x
Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of chemical neuroanatomy, 26(4), 317-330. doi: 10.1016/j.jchemneu.2003.10.003
Hampshire, A., & Sharp, D. J. (2015). Inferior PFC subregions have broad cognitive roles. Trends in cognitive sciences, 19(12), 712-713. doi: 10.1016/j.tics.2015.09.010
Harsay, H. A., Cohen, M. X., Oosterhof, N. N., Forstmann, B. U., Mars, R. B., & Ridderinkhof, K. R. (2011). Functional connectivity of the striatum links motivation to action control in humans. Journal of Neuroscience, 31(29), 10701-10711. doi: 10.1523/JNEUROSCI.5415-10.2011
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., Walsh, V., Muggleton, N. G., & Juan, C. H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage, 56(4), 2249-2257. doi: 10.1016/j.neuroimage.2011.03.059
Ide, J. S., Shenoy, P., Yu, A. J., & Li, C. S. (2013). Bayesian prediction and evaluation in the anterior cingulate cortex. Journal of Neuroscience, 33(5), 2039-2047. doi: 10.1523/JNEUROSCI.2201-12.2013
Ikeda, A., Yazawa, S., Kunieda, T., Ohara, S., Terada, K., Mikuni, N., Nagamine, T., Taki, W., Kimura, J., & Shibasaki, H. (1999). Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain, 122(5), 915-931. doi: 10.1093/brain/122.5.915
Isoda, M., & Hikosaka, O. (2007). Switching from automatic to controlled action by monkey medial frontal cortex. Nature Neuroscience, 10(2), 240-248. doi: 10.1038/nn1830
Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. Journal of Neuroscience, 28(28), 7209-7218. doi: 10.1523/JNEUROSCI.0487-08.2008
Jacobson, L., Javitt, D. C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of cognitive neuroscience, 23(11), 3380-3387. doi: 10.1162/jocn_a_00020
Jaffard, M., Longcamp, M., Velay, J. L., Anton, J. L., Roth, M., Nazarian, B., & Boulinguez, P. (2008). Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage, 42(3), 1196-1206. doi: 10.1016/j.neuroimage.2008.05.041
Jahfari, S., Verbruggen, F., Frank, M. J., Waldorp, L. J., Colzato, L., Ridderinkhof, K. R., & Forstmann, B. U. (2012). How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions. Journal of Neuroscience, 32(32), 10870-10878. doi: 10.1523/JNEUROSCI.0902-12.2012
Jahfari, S., Waldorp, L., van den Wildenberg, W. P., Scholte, H. S., Ridderinkhof, K. R., & Forstmann, B. U. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. Journal of Neuroscience, 31(18), 6891-6899. doi: 10.1523/JNEUROSCI.5253-10.2011
Jellema, T., Maassen, G., & Perrett, D. I. (2004). Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. Cerebral Cortex, 14(7), 781-790. doi: 10.1093/cercor/bhh038
Jensen, J., Smith, A. J., Willeit, M., Crawley, A. P., Mikulis, D. J., Vitcu, I., & Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human brain mapping, 28(4), 294-302. doi: 10.1002/hbm.20274
Johansen-Berg, H., Behrens, T. EJ, Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., Smith, S. M., Higham, D. J., & Matthews, P. M. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13335-13340. doi: 10.1073/pnas.0403743101
Kalanthroff, E., Cohen, N., & Henik, A. (2013). Stop feeling: inhibition of emotional interference following stop-signal trials. Frontiers in human neuroscience, 7. doi: 10.3389/fnhum.2013.00078
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004). Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. Journal of Neurophysiology, 91(2), 1013-1024. doi: 10.1152/jn.00721.2003
Kim, J. H., Lee, J. M., Jo, H. J., Kim, S. H., Lee, J. H., Kim, S. T., Seo, S. W., Cox, R. W., Na, D. L., & Kim, S. I. (2010). Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage, 49(3), 2375-2386. doi: 10.1016/j.neuroimage.2009.10.016
Ko, L. W., Shih, Y. C., Chikara, R. K., Chuang, Y. T., & Chang, E. C. (2016). Neural mechanisms of inhibitory response in a battlefield scenario: a simultaneous fMRI-EEG study. Frontiers in human neuroscience, 10. doi: 10.3389/fnhum.2016.00185
Langford, Z. D, Schevernels, H., & Boehler, C. N. (2016). Motivational context for response inhibition influences proactive involvement of attention. Scientific reports, 6, 35122. doi: 10.1038/srep35122
Lau, H. C., Rogers, R. D., Haggard, P., & Passingham, R. E. (2004). Attention to intention. science, 303(5661), 1208-1210. doi: 10.1126/science.1090973
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418(6896), 413-417. doi: 10.1038/nature00892
Lavagnino, L., Arnone, D., Cao, B., Soares, J. C., & Selvaraj, S. (2016). Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neuroscience & Biobehavioral Reviews, 68, 714-726. doi: 10.1016/j.neubiorev.2016.06.041
Lehericy, S., Ducros, M., Krainik, A., Francois, C., Van de Moortele, P. F., Ugurbil, K., & Kim, D. S. (2004). 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cerebral Cortex, 14(12), 1302-1309. doi: 10.1093/cercor/bhh091
Leotti, L. A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 430-447. doi: 10.1037/a0016802
Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Annals of the New York Academy of Sciences, 1224(1), 40-62. doi: 10.1111/j.1749-6632.2011.05958.x
Li, C. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26(1), 186-192. doi: 10.1523/JNEUROSCI.3741-05.2006
Liddle, E. B., Scerif, G., Hollis, C. P., Batty, M. J., Groom, M. J., Liotti, M., & Liddle, P. F. (2009). Looking before you leap: a theory of motivated control of action. Cognition, 112(1), 141-158. doi: 10.1016/j.cognition.2009.03.006
Litt, A., Plassmann, H., Shiv, B., & Rangel, A. (2010). Dissociating valuation and saliency signals during decision-making. Cerebral cortex, 21(1), 95-102. doi: 10.1093/cercor/bhq065
Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 35(5), 1219-1236. doi: 10.1016/j.neubiorev.2010.12.012
Logan, G. D. (1994). On the ability to inhibit thought and action: A users' guide to the stop signal paradigm. In D. D. & C. T. H. (Eds.), Inhibitory processes in attention, memory, and language (pp. 189-239). San Diego: Academic Press
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological review, 91(3), 295. doi: 10.1037/0033-295X.91.3.295
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276. doi: 10.1037/0096-1523.10.2.276
Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control. Psychological Science, 8(1), 60-64. doi: 10.1111/j.1467-9280.1997.tb00545.x
Logan, G. D., Yamaguchi, M., Schall, J. D., & Palmeri, T. J. (2015). Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychological review, 122(2), 115. doi: 10.1037/a0038893
Madsen, K. S., Baaré, W. F., Vestergaard, M., Skimminge, A., Ejersbo, L. R., Ramsøy, T. Z., Gerlach, C., Åkeson, P., Paulson, O. B., & Jernigan, T. L. (2010). Response inhibition is associated with white matter microstructure in children. Neuropsychologia, 48(4), 854-862. doi: 10.1016/j.neuropsychologia.2009.11.001
Majid, D. A., Cai, W., Corey-Bloom, J., & Aron, A. R. (2013). Proactive selective response suppression is implemented via the basal ganglia. Journal of Neuroscience, 33(33), 13259-13269. doi: 10.1523/JNEUROSCI.5651-12.2013
Mattfeld, A. T., Gluck, M. A., & Stark, C. E. (2011). Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning & Memory, 18(11), 703-711. doi: 10.1101/lm.022889.111
McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage, 61(4), 1277-1286. doi: 10.1016/j.neuroimage.2012.03.068
Miller, E. M., Shankar, M. U., Knutson, B., & McClure, S. M. (2014). Dissociating motivation from reward in human striatal activity. Journal of cognitive neuroscience, 26(5), 1075-1084. doi: 10.1162/jocn_a_00535
Nachev, P., Rees, G., Parton, A., Kennard, C., & Husain, M. (2005). Volition and conflict in human medial frontal cortex. Current Biology, 15(2), 122-128. doi: 10.1016/j.cub.2005.01.006
Nakamura, K., & Hikosaka, O. (2006). Role of dopamine in the primate caudate nucleus in reward modulation of saccades. Journal of neuroscience, 26(20), 5360-5369. doi: 10.1523/JNEUROSCI.4853-05.2006
Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., Ikeuchi, Y., & Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of neurophysiology, 84(1), 289-300. doi: 10.1152/jn.2000.84.1.289
Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience research, 43(2), 111-117. doi: 10.1016/S0168-0102(02)00027-5
Neubert, F. X., Mars, R. B., Buch, E. R., Olivier, E., & Rushworth, M. F. (2010). Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13240-13245. doi: 10.1073/pnas.1000674107
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in cognitive sciences, 9(5), 242-249. doi: 10.1016/j.tics.2005.03.010
Oettingen, G. (2012). Future thought and behaviour change. European review of social psychology, 23(1), 1-63. doi: 10.1080/10463283.2011.643698
Oettingen, G., Mayer, D., & Thorpe, J. (2010). Self-regulation of commitment to reduce cigarette consumption: Mental contrasting of future with reality. Psychology and Health, 25(8), 961-977. doi: 10.1080/08870440903079448
Padmala, S., Bauer, A., & Pessoa, L. (2011). Negative emotion impairs conflict-driven executive control. Frontiers in Psychology, 2. doi: 10.3389/fpsyg.2011.00192
Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48(2), 558-565. doi: 10.1016/j.neuropsychologia.2009.10.017
Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in cognitive sciences, 13(4), 160-166. doi: 10.1016/j.tics.2009.01.006
Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in neuroscience, 4. doi: 10.3389/fnins.2010.00017
Philiastides, M. G., Auksztulewicz, R., Heekeren, H. R., & Blankenburg, F. (2011). Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Current biology, 21(11), 980-983. doi: 10.1016/j.cub.2011.04.034
Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral cortex, 16(10), 1508-1521. doi: 10.1093/cercor/bhj088
Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1431), 435-445. doi: 10.1098/rstb.2002.1221
Ramautar, J. R., Kok, A., & Ridderinkhof, K. R. (2004). Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain and cognition, 56(2), 234-252. doi: 10.1016/j.bandc.2004.07.002
Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., Agid, Y., DeLong, M. R., & Obeso, J. A. (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nature Reviews Neuroscience, 11(11), 760-772. doi: 10.1038/nrn2915
Rieger, M., Gauggel, S., & Burmeister, K. (2003). Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology, 17(2), 272-282. doi: 10.1037/0894-4105.17.2.272
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature reviews neuroscience, 11(4), 264-274. doi: 10.1038/nrn2805
Robbins, T. W., & Everitt, B. J. (1992). Functions of dopamine in the dorsal and ventral striatum. Paper presented at the Seminars in Neuroscience.
Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., Simmons, A., Williams, S., & Giampietro, V. Andrew, C. M. (2001). Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13(2), 250-261. doi: 10.1006/nimg.2000.0685
Rushworth, M. F., Kennerley, S. W., & Walton, M. E. (2005). Cognitive neuroscience: resolving conflict in and over the medial frontal cortex. Current Biology, 15(2), R54-R56. doi: 10.1016/j.cub.2004.12.054
Rushworth, M. F., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in cognitive sciences, 8(9), 410-417. doi: 10.1016/j.tics.2004.07.009
Scangos, K. W., & Stuphorn, V. (2010). Medial frontal cortex motivates but does not control movement initiation in the countermanding task. Journal of Neuroscience, 30(5), 1968-1982. doi: 10.1523/JNEUROSCI.4509-09.2010
Schachar, R. J., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of abnormal child psychology, 28(3), 227-235. doi: 10.1023/A:1005140103162
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social science information, 44(4), 695-729. doi: 10.1177/0539018405058216
Schevernels, H., Bombeke, K., Van der Borght, L., Hopf, J. M., Krebs, R. M., & Boehler, C. N. (2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. NeuroImage, 121, 115-125. doi: 10.1016/j.neuroimage.2015.07.023
Sharp, D. J., Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C., & Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6106-6111. doi: 10.1073/pnas.1000175107
Skinner, B. F. (1953). Science and human behavior: Simon and Schuster.
Starr, P. A., Kang, G. A, Heath, S., Shimamoto, S., & Turner, R. S. (2008). Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway. Experimental neurology, 211(1), 227-233. doi: 10.1016/j.expneurol.2008.01.023
Stuphorn, V., & Emeric, E. E. (2012). Proactive and reactive control by the medial frontal cortex. Frontiers in Neuroengineering, 5. doi: 10.3389/fneng.2012.00009
Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S., Aron, A. R., & Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Neuroimage, 59(3), 2860-2870. doi: 10.1016/j.neuroimage.2011.09.049
Swann, N. C., Tandon, N., Canolty, R., Ellmore, T. M., McEvoy, L. K., Dreyer, S., DiSano, M., & Aron, A. R. (2009). Intracranial EEG reveals a time-and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. Journal of Neuroscience, 29(40), 12675-12685. doi: 10.1523/JNEUROSCI.3359-09.2009
Swann, N. C., Tandon, N., Pieters, T. A., & Aron, A. R. (2013). Intracranial electroencephalography reveals different temporal profiles for dorsal- and ventro-lateral prefrontal cortex in preparing to stop action. Cerebral Cortex, 23(10), 2479-2488. doi: 10.1093/cercor/bhs245
Takikawa, Y., Kawagoe, R., & Hikosaka, O. (2002). Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. Journal of Neurophysiology, 87(1), 508-515. doi: 10.1152/jn.00288.2001
Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281-292. doi: 10.1016/S0896-6273(03)00848-1
Verbruggen, F., Aron, A. R., Stevens, M. A., & Chambers, C. D. (2010). Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13966-13971. doi: 10.1073/pnas.1001957107
Verbruggen, F., Chambers, C. D., & Logan, G. D. (2013). Fictitious inhibitory differences how skewness and slowing distort the estimation of stopping latencies. Psychological science, 24(3), 352-362. doi: 10.1177/0956797612457390
Verbruggen, F., & De Houwer, J. (2007). Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm. Cognition and emotion, 21(2), 391-403. doi: 10.1080/02699930600625081
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in cognitive sciences, 12(11), 418-424. doi: 10.1016/j.tics.2008.07.005
Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience & Biobehavioral Reviews, 33(5), 647-661. doi: 10.1016/j.neubiorev.2008.08.014
Whelan, R., Conrod, P. J., Poline, J. B., Lourdusamy, A., Banaschewski, T., Barker, G. J., Bellgrove M. A. , Büchel, C., Byrne M., Cummins T. D., Fauth-Bühler M., Flor H., Gallinat J., Heinz A., Ittermann B., Mann K., Martinot J. L., Lalor E. C., Lathrop M., Loth E., Nees F., Paus T., Rietschel M., Smolka M.N., Spanagel R., Stephens D.N., Struve M., Thyreau B., Vollstaedt-Klein S., Robbins T.W., Schumann G., Garavan H. (2012). Adolescent impulsivity phenotypes characterized by distinct brain networks. Nature neuroscience, 15(6), 920-925. doi: 10.1038/nn.3092
Yamaguchi, M., Logan, G. D., & Bissett, P. G. (2012). Stopping while going! Response inhibition does not suffer dual-task interference. Journal of experimental psychology: human perception and performance, 38(1), 123-134. doi: 10.1037/a0023918
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2006). Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behavioural brain research, 166(2), 189-196. doi: 10.1016/j.bbr.2005.07.012
Yu, J., Hung, D. L., Tseng, P., Tzeng, O. J., Muggleton, N. G., & Juan, C. H. (2012). Sex differences in how erotic and painful stimuli impair inhibitory control. Cognition, 124(2), 251-255. doi: 10.1016/j.cognition.2012.04.007
Yu, J., Tseng, P., Hung, D. L., Wu, S. W., & Juan, C. H. (2015). Brain stimulation improves cognitive control by modulating medial‐frontal activity and preSMA‐vmPFC functional connectivity. Human brain mapping, 36(10), 4004-4015. doi: 10.1002/hbm.22893
Zandbelt, B. B., & Vink, M. (2010). On the role of the striatum in response inhibition. PloS one, 5(11), e13848. doi: 10.1371/journal.pone.0013848
Zeelenberg, M., Nelissen, R. M., Breugelmans, S. M., & Pieters, R. (2008). On emotion specificity in decision making: Why feeling is for doing. Judgment and Decision making, 3(1), 18.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔