(54.236.58.220) 您好!臺灣時間:2021/03/01 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉威廷
研究生(外文):Wei-Ting Liu
論文名稱:天蠶素 B 參與埃及斑蚊體壁形成之研究
論文名稱(外文):Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticl
指導教授:陳正成陳正成引用關係
指導教授(外文):Cheng-Chen Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:120
中文關鍵詞:埃及斑蚊天蠶素蚊蛹雙股RNA原酚氧化酶體壁形成
外文關鍵詞:aedes aegypticecropinpupaedouble-stranded RNAprophenoloxidasecuticle formation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
大部分的抗菌蛋白能夠被入侵微生物迅速誘導表現且能非專一性殺死微生物,不過有些抗菌蛋白不被微生物誘導表現或其表現量很低且抗菌能力差,我們假設這些不被微生物入侵所誘導表現的抗菌蛋白有可能在昆蟲的其他正常生理功能中扮演著重要角色。為證實此假說,我們分析埃及斑蚊(Aedes aegypti)的10個天蠶素抗菌蛋白對微生物入侵誘導表現,發現埃及斑蚊抗菌蛋白天蠶素B基因在成蚊不因細菌注射而誘導表現並於蛹期持續表現。而利用雙股RNA沉寂蚊蛹的埃及斑蚊天蠶素B會導致蚊蛹高死亡率、羽化成畸形成蟲及蛹體內成蟲新生體壁形成的缺損,如造成成蟲新生內表皮薄層數減少和幾丁質微絲的半螺旋結構紊亂。若將埃及斑蚊天蠶素B雙股RNA與埃及斑蚊天蠶素B胜肽同時注入蚊蛹,蚊蛹死亡率會顯著降低且不會羽化成畸形成蟲。此外,埃及斑蚊天蠶素B基因沉寂也會導致埃及斑蚊原酚氧化酶3和4 mRNA表現量下降。而注射埃及斑蚊天蠶素B胜肽可以促使埃及斑蚊蚊蛹的原酚氧化酶3基因的mRNA表現量顯著上升。而沉寂埃及斑蚊原酚氧化酶3基因表現對蚊蛹所造成的影響與埃及斑蚊天蠶素B基因沉寂所造成的影響極為相似。後續研究結果發現埃及斑蚊天蠶素B胜肽同時存在蛹期細胞之細胞質及細胞核,且證實埃及斑蚊天蠶素B胜肽可直接結合上埃及斑蚊原酚氧化酶3基因上的TTGG(A/C)A推定結合位點。上述之結果顯示埃及斑蚊天蠶素B藉由調控埃及斑蚊原酚氧化酶3的表現,在蚊蛹之成蟲體壁形成佔有重要角色。
Most of antimicrobial peptides (AMPs) can be induced rapidly and provide a non-specific killing of invading microbes. However, some of AMPs with no or low induced expression during the invasion of pathogens have weak antimicrobial activity. We hypothesized that those AMPs with no or low induced expression may play important roles in other physiological functions. Subsequently, we analysed the expression profiles of 10 cecropins in bacteria-inoculated Aedes aegypti and found Aedes aegypti cecropin B (Aacec B) was uninduced by bacterial challenges in adults and was expressed constitutively in pupae. Knockdown in the pupae of Aacec B using double-stranded RNA (dsRNA) resulted in high mortality, the emergence of deformed adults and an impairment of pharate adult cuticle formation with fewer lamellae being deposited and the helicoidal pattern of the chitin microfibrils being disorganized. Simultaneous injection of Aacec B dsRNA and Aacec B peptide into pupae significantly reduced this mortality and no deformed adults then emerged. The expression levels of Ae. aegypti prophenoloxidase (AaPPO) 3 and AaPPO 4 were significantly reduced in the Aacec B knockdown pupae. Exogenous Aacec B peptide significantly enhanced the transcription of AaPPO 3 in pupae. Knockdown of AaPPO 3 in pupae caused effects similar to Aacec B-knockdown. The Aacec B peptide could be detected in both the cytoplasm and nuclei of pupal cells and was able to bind to the TTGG(A/C)A motif in AaPPO 3 DNA both in vitro and in vivo. These findings suggest that Aacec B plays a crucial role in pharate adult cuticle formation via the regulation of AaPPO 3 gene expression in pupae.
目錄 1
中文摘要 4
Abstract 6
壹、緒論 8
一、昆蟲的防禦機制 8
二、抗菌蛋白 8
三、天蠶素(cecropin) 11
四、埃及斑蚊 12
貳、研究動機 14
叁、材料與方法 15
3-1 蚊子飼養 15
3-2 埃及斑蚊的微生物注射方法 15
3-3 RNA之萃取 16
3-4 聚合酶連鎖反應(Polymerase chain reaction, PCR) 16
3-5 反轉錄-即時聚合酶連鎖反應 17
3-6 雙股RNA合成與注射 18
3-7 蟲體蛋白質、細胞質與細胞核蛋白之萃取 19
3-8 蛋白質電泳分析與西方墨漬法 21
3-9 蛋白質合成 22
3-10 蛋白質之液相層析串聯式質譜儀分析鑑定 23
3-10-1 膠內蛋白質酵素水解方法 23
3-10-2 液相層析串聯式質譜儀分析 24
3-10-3 數據庫搜索比對 25
3-11 穿透式電子顯微鏡觀察 25
3-12 DNA pull-down assay 26
3-13 DNA推定結合位點分析 28
3-14 電泳遷移率變動分析(Electrophoretic mobility-shift assay) 28
3-15 染色質免疫沉澱分析(Chromatin immunoprecipitation, ChIP) 29
肆、研究結果 31
4-1 埃及斑蚊天蠶素基因群之表現 31
4-2 埃及斑蚊天蠶素B胜肽在蚊蛹細胞之表現 32
4-3 沉寂埃及斑蚊天蠶素B後對蚊蛹之影響 33
4-4 埃及斑蚊天蠶素B基因沉寂對蚊蛹體壁形成的超微結構的影響 35
4-5 埃及斑蚊天蠶素B基因沉寂後蚊蛹蛋白質種類及含量的變化 36
4-6 埃及斑蚊原酚氧化酶3基因沉寂後對蚊蛹之影響 37
4-7 埃及斑蚊天蠶素B胜肽對埃及斑蚊原酚氧化酶3基因表現之影響 39
4-8 檢測蚊蛹細胞細胞質與細胞核內埃及斑蚊天蠶素B胜肽之表現 40
4-9 埃及斑蚊天蠶素B胜肽與埃及斑蚊原酚氧化酶3 DNA結合之探討 41
4-9-1 利用DNA pull-down assay探討埃及斑蚊天蠶素B胜肽與埃及斑蚊原酚氧化酶3 DNA之結合 41
4-9-2 利用MEME suite分析埃及斑蚊天蠶素B胜肽與埃及斑蚊原酚氧化酶3 DNA之推定結合位點 42
4-9-3 利用電泳遷移率變動分析來探討埃及斑蚊天蠶素B胜肽與埃及斑蚊原酚氧化酶3 DNA結合之專一性 43
4-9-4 利用染色質免疫沉澱分析(chromatin immunoprecipitation (ChIP) assay)來探討埃及斑蚊天蠶素B胜肽與埃及斑蚊原酚氧化酶3 DNA在蛹期之結合時間點 45
伍、討論 46
陸、參考文獻 51
柒、圖/表 71
捌、附錄 109
1. Govind, S. Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 5, 29-43. (2008).
2. Engel, P. & Moran, N. A. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. (2013).
3. Hillyer, J. F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 58, 102-118. (2016).
4. Meng, E. et al. Altered immune function of Octodonta nipae (Maulik) to its pupal endoparasitoid, Tetrastichus brontispae Ferrière. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 198, 100-109. (2016).
5. Daw, M. A. & Falkiner, F. R. Bacteriocins: nature, function and structure. Micron. 27, 467-479. (1996).
6. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B. & Lotfipour, F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113, 723-736. (2012).
7. Essig, A. et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J. Biol. Chem. 289, 34953-34964. (2014).
8. Silber, J., Kramer, A., Labes, A. & Tasdemir, D. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Mar. Drugs. 14, E137. (2016).
9. Destoumieux, D. et al. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J. Biol. Chem. 272, 28398-28406. (1997).
10. Rolland, J. L. et al. Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Mol. Immunol. 47, 1269-1277. (2010).
11. Gueguen, Y., et al. Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. Mol. Immunol. 46, 516-522. (2009).
12. Zhong, J., Wang, W., Yang, X., Yan, X. & Liu, R. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides. 39, 1-5. (2013).
13. Gerdol, M. et al. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis. Genome Biol. Evol. 7, 2203-2219. (2015).
14. Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 84, 5449-5453. (1987).
15. Rinaldi, A. C. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr. Opin. Chem. Biol. 6, 799-804. (2002).
16. Roelants, K. et al. Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet. 9, e1003662. (2013).
17. Oren, Z. & Shai, Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur. J. Biochem. 237, 303-310. (1996).
18. Cole, A. M., Weis, P. & Diamond, G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272, 12008-12013. (1997).
19. Boman, H. G. Antibacterial peptides: key components needed in immunity. Cell. 65, 205-207. (1991).
20. Mylonakis, E., Podsiadlowski, L., Muhammed, M. & Vilcinskas, A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371, 20150290. (2016).
21. Fratini, F., Cilia, G., Turchi, B. & Felicioli, A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon. 130, 91-103. (2017).
22. Gordya, N., et al. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One. 12, e0173559. (2017).
23. Liu, S. H. et al. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 206, 1-7. (2017).
24. Cammue, B. P. et al. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem. 267, 2228-2233. (1992).
25. Nawrot, R. et al. Plant antimicrobial peptides. Folia Microbiol. 59, 181-196. (2013).
26. Tam, J. P., Wang, S., Wong, K. H. & Tan, W. L. Antimicrobial peptides from plants. Pharmaceuticals. 8, 711-757. (2015).
27. Krause, A., et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147-150. (2000).
28. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806-7810. (2000).
29. Bahar, A. A. & Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel). 6, 1543-1575. (2013).
30. Yi, H. Y., Chowdhury, M., Huang, Y. D. & Yu, X. Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822. (2014).
31. Dehghan Esmatabadi, M. J. et al. Review of new insights into antimicrobial agents. Cell Mol. Biol. 63, 40-48. (2017).
32. Alkotaini, B., Anuar, N., Kadhum, A. A. & Sani, A. A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J. Ind. Microbiol. Biotechnol. 40, 571-579. (2013).
33. Andersson, D. I., Hughes, D. & Kubicek-Sutherland, J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 26, 43-57. (2016).
34. van 't Hof, W., Veerman, E. C., Helmerhorst, E. J. & Amerongen, A. V. Antimicrobial peptides: properties and applicability. Biol. Chem. 382, 597-619. (2001).
35. Gudmundsson, G. H. et al. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238, 325-332. (1996).
36. Steiner, H., Hultmark, D., Engström, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 292, 246-248. (1981).
37. Terwilliger, T. C. & Eisenberg, D. The structure of melittin. II. Interpretation of the structure. J. Biol. Chem. 257, 6016-6022. (1982).
38. Casteels, P. et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386. (1990).
39. Gennaro, R., Skerlavaj, B. & Romeo, D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 57, 3142-3146. (1989).
40. Agerberth, B. et al. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202, 849-854. (1991).
41. Selsted, M. E. et al. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292-4295. (1992).
42. Todorović, M., Bowler, D. R., Gillan, M. J. & Miyazaki, T. Density-functional theory study of gramicidin A ion channel geometry and electronic properties. J. R. Soc. Interface. 10, 20130547. (2013).
43. Landon, C., Sodano, P., Hetru, C., Hoffmann, J. & Ptak, M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 6, 1878-1884. (1997).
44. Cornet, B. et al. Refined three-dimensional solution structure of insect defensin A. Structure. 3, 435-448. (1995).
45. Cruz, J., Ortiz, C., Guzmán, F., Fernández-Lafuente, R. & Torres, R. Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr. Med. Chem. 21, 2299-2321. (2014).
46. Hu, H. et al. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol. Cells. 35, 106-114. (2013).
47. Vieira, C. S. et al. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit. Vectors. 7, 232-244. (2014).
48. Tsakas, S. & Marmaras, V. Insect immunity and its signaling: an overview. Invertebrate Surviv. J. 7, 228-238. (2010).
49. Jenssen, H., Hamill, P. & Hancock, R. E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511. (2006).
50. Rao, X. J. & Yu, X. Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 34, 1119-11128. (2010).
51. Hoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta. 1778, 357-375. (2008).
52. Friedrich, C. L., Moyles, D., Beveridge, T. J. & Hancock, R. E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44, 2086-2092. (2000).
53. Boggs, J. M. et al. Effect of magainin, class L, and class A amphipathic peptides on fatty acid spin labels in lipid bilayers. Biochim. Biophys. Acta. 1511, 28-41. (2001).
54. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250. (2005).
55. Wenzel, M. et al. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. USA. 111, E1409- E1418. (2014).
56. Del Castillo, F. J., del Castillo, I. & Moreno, F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol. 183, 2137-2140. (2001).
57. Marchand, C. et al. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res. 34, 5157-5165. (2006).
58. Tu, J., Wu, G., Zuo, Y., Zhao, L. & Wang, S. ZL-2, a cathelicidin-derived antimicrobial peptide, has a broad antimicrobial activity against gram-positive bacteria and gram-negative bacteria in vitro and in vivo. Arch. Pharm. Res. 38, 1802-1809. (2015).
59. Malanovic, N. & Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel). 9, E59. (2016).
60. Matejuk, A. et al. Peptide-based antifungal therapies against emerging infections. Drugs Future. 35, 197. (2010).
61. Guo, C. et al. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp. Ther. Med. 4, 1063-1068. (2012).
62. Ekengren, S. & Hultmark, D. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29, 965-972. (1999).
63. Luplertlop, N. et al. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 7, e1001252. (2011).
64. Bettencourt, R., Terenius, O. & Faye, I. Hemolin gene silencing by ds-RNA injected into cecropia pupae is lethal to next generation embryos. Insect Mol. Biol. 11, 267-271. (2002).
65. Dorin, J. R. & Barratt, C. L. Importance of β-defensins in sperm function. Mol. Hum. Reprod. 20, 821-826. (2014).
66. Hultmark, D., Steiner, H., Rasmuson, T. & Boman, H. G. Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16. (1980).
67. Pillai, A., Ueno, S., Zhang, H., Lee, J. M. & Kato1, Y. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem. J. 390, 207-214. (2005).
68. Hultmark, D., Engström, A., Bennich, H., Kapur, R. & Boman, H. G. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127, 207-217. (1982).
69. Samakovlis, C., Kimbrell, D. A., Kylsten, P., Engström, A. & Hultmark, D. The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J. 9, 2969-2976. (1990).
70. Lowenberger, C. et al. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 274, 20092-20097. (1999).
71. Oren, Z. & Shai, Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 47, 451-463. (1998).
72. Lockey, T. D. & Ourth, D. D. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur. J. Biochem. 236, 263-271. (1996).
73. Srisailam, S. et al. Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. Eur. J. Biochem. 268, 4278-4284. (2001).
74. Cheng, D. Q., Li, Y. & Huang, J. F. Molecular evolution of the primate α-/θ-defensin multigene family. PLoS One. 9, e97425. (2014).
75. Yang, W. Y. et al. Functional divergence of six isoforms of antifungal peptide Drosomycin in Drosophila melanogaster. Gene. 379, 26-32. (2006).
76. Deng, X. J. et al. Gene expression divergence and evolutionary analysis of the drosomycin gene family in Drosophila melanogaster. J. Biomed. Biotechnol. 2009, 315423. (2009).
77. Ponnuvel, K. M., Subhasri, N., Sirigineedi, S., Murthy, G. N. & Vijayaprakash, N. B. Molecular evolution of the cecropin multigene family in silkworm Bombyx mori. Bioinformation. 5, 97-103. (2010).
78. Yang, W. et al. Functional divergence among silkworm antimicrobial peptide paralogs by the activities of recombinant proteins and the induced expression profiles. PLoS One. 6, e18109. (2011).
79. Nene, V. et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 316, 1718-1723. (2007).
80. Ramos-Onsins, S. & Aguadé, M. Molecular evolution of the Cecropin multigene family in Drosophila: functional genes vs. pseudogenes. Genetics. 150, 157-171. (1998).
81. Hillyer, J. F., Schmidt, S. L., Fuchs, J. F., Boyle, J. P. & Christensen, B. M. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol. 7, 39-51. (2005).
82. Coggins, S. A., Estévez-Lao, T. Y. & Hillyer, J. F. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 37, 390-401. (2012).
83. Pan, X. et al. (2012). Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA. 109, E23-E31.
84. Ramirez, J. L. et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 6, e1561. (2012).
85. Xiao, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027. (2014).
86. Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 4, e08347. (2015).
87. Kauffman, E. B. & Kramer, L. D. Zika virus mosquito vectors: competence, biology, and vector control. J. Infect. Dis. 216, S976-S990. (2017).
88. Le Coupanec, A. et al. Aedes mosquito saliva modulates Rift Valley fever virus pathogenicity. PLoS Negl. Trop. Dis. 7, e2237. (2013).
89. Agha, S. B., Tchouassi, D. P., Bastos, A. D. S. & Sang, R. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasit. Vectors. 10, 628. (2017).
90. Li, C., Lu, Y., Liu, J. & Wu, X. Climate change and dengue fever transmission in China: Evidences and challenges. Sci. Total. Environ. 622-623, 493-501. (2017).
91. Garske, T. et al. Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 11, e1001638. (2014).
92. Wasserman, S., Tambyah, P. A. & Lim, P. L. Yellow fever cases in Asia: primed for an epidemic. Int. J. Infect. Dis. 48, 98-103. (2016).
93. Tharmarajah, K., Mahalingam, S. & Zaid, A. Chikungunya: vaccines and therapeutics. F1000Research. 6, 2114. (2017).
94. Lim, S. K., Lim, J. K. & Yoon, I. K. An Update on Zika Virus in Asia. Infect. Chemother. 49, 91-100. (2017).
95. Yuan, L. et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science. 358, 933-936. (2017).
96. Chen, Y. X., Wu, J. W. & Liu. D. P. Risk of transmission and prevention strategy evaluation of chikungunya fever in Taiwan (2013-01-25). Epidemiology Bulletin. 26, 429-439. (2010).
97. Hsu, J. C., Hsieh, C. L. & Lu. C. Y. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010-2015. Int. J. Infect Dis. 54, 43-49. (2017).
98. Vezzani, D. Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop. Med. Int. Health. 12, 299-313. (2007).
99. 衛生福利部疾病管制署. 2017年登革熱屈公病防治工作指引手冊. pp. 7. (2017).
100. World Health Organization. Frequently asked questions on dengue. [available from: http://www.wpro.who.int/mediacentre/releases/ 2010/20100916_FAQs/en/]. (2010).
101. Maringer, K. et al. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics. 18, 101. (2017).
102. Price, D. P., Schilkey, F. D., Ulanov, A. & Hansen, I. A. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasit Vectors. 8, 252. (2015).
103. Garcia, G. R., Maruyama, S. R., Malardo, T., Zangirolamo A. F. & Gardinassi, L. G. The biology of hematophagous arthropods addressed by molecular high-throughput approaches. Austin J. Trop. Med. & Hyg. 1, 1004. (2015).
104. Huang, J. T. Effects of Toll receptor 9A on dengue 2 virus replication in Aedes aegypti. Master’s Thesis, Institute of Microbiology and Immunology, National Yang-Ming University. 51 pp. (In Chinese). (2014).
105. Tsao, I. Y., Lin, U. S., Christensen, B. M. & Chen, C. C. Armigeres subalbatus prophenoloxidase III: Cloning, characterization and potential role in morphogenesis. Insect Biochem. Mol. Biol. 39, 96-104. (2009).
106. Isoe, J., Rascón, A. A. Jr., Kunz, S. & Miesfeld, R. L. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 39, 903. (2009).
107. Liao, C. C. et al. Proteomics analysis to identify and characterize the molecular signatures of hepatic steatosis in ovariectomized rats as a model of postmenopausal status. Nutrients. 7, 8752-8766. (2015).
108. Tsao, I. Y., Christensen B. M. & Chen. C. C. Armigeres subalbatus (Diptera: Culicidae) prophenoloxidase III is required for mosquito cuticle formation: Ultrastructural study on dsRNA-knockdown mosquitoes. J. Med. Entomol. 47, 495-503. (2010).
109. Jutras, B. L., Verma, A. & Stevenson. B. Identification of novel DNA binding proteins using DNA affinity chromatography-pulldown. Curr. Protoc. Microbiol. Chapter: unit 1F.1. (2012).
110. Bailey, T. L. et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208. (2009).
111. Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12, 982-992. (2010).
112. Li, M., Mead, E. A. & Zhu. J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. USA. 108, 638-643. (2011).
113. Bilgin, B., Nath, A., Chan C. & Walton. S. P. Characterization of transcription factor response kinetics in parallel. BMC Biotechnol. 16, 62. (2016).
114. Saito, A. et al. Purification and cDNA cloning of a cecropin from the longicorn beetle, Acalolepta luxuriosa. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142, 31723. (2005).
115. Tryselius, Y., Samakovlis, C., Kimbrell, D. A. & Hultmark, D. CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. Eur. J. Biochem. 204, 3959. (1992).
116. Zhou, X., Nguyen, T. & Kimbrell, D. A. Identification and characterization of the cecropin antibacterial protein gene locus in Drosophila virilis. J. Mol. Evol. 44, 27281. (1997).
117. Sun, D., Eccleston, E. D. & Fallon, A. M. Cloning and expression of three cecropin cDNAs from a mosquito cell line. FEBS Lett. 454, 14751. (1999).
118. Vizioli, J. et al. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 9, 7584. (2000).
119. Jin, F. et al. cDNA cloning and characterization of the antibacterial peptide cecropin 1 from the diamondback moth, Plutella xylostella L. Protein Expr. Purif. 85, 2308. (2012).
120. Qu, Z., Steiner, H., Engström, A., Bennich, H. & Boman, H. G. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur. J. Biochem. 127, 21924. (1982).
121. van Hofsten, P. et al. Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc. Natl. Acad. Sci. USA. 82, 22403. (1985).
122. Dickinson, L., Russell, V., Dunn, P. E. A family of bacteria regulated, cecropin D-like peptides from Manduca sexta. J. Biol. Chem. 263, 194249. (1988).
123. Morishima, I., Suginaka, S., Ueno, T. & Hirano, H. Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp. Biochem. Physiol. B. 95, 5514. (1990).
124. Taniai, K., Kato, Y., Hirochika, H. & Yamakawa, M. Isolation and nucleotide sequence of cecropin B cDNA clones from the silkworm, Bombyx mori. Biochim. Biophys. Acta. 1132, 2036. (1992).
125. Yamano, Y., Matsumoto, M., Inoue, K., Kawabata, T. & Morishima, I. Cloning of cDNAs for cecropins A and B, and expression of the genes in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 58, 14768. (1994).
126. Yang, J. et al. cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 122, 40914. (1999).
127. Radonić, A., Weise, C., Niere, M., Wittwer, D. & Wiesner, A. Isolation and sequencing of three cecropins from the immune competent lepidopteran Estigmene acraea hemocyte line. J. Invertebr. Pathol. 74, 20912. (1999).
128. Lavine, M. D., Chen, G. & Strand, M. R. Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem. Mol. Biol. 35, 133546. (2005).
129. Steiner, H., Andreu, D. & Merrifield, R. B. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim. Biophys. Acta. 939, 260-266. (1988).
130. Gwadz, R. W. et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 57, 2628-2633. (1989).
131. Chalk, R., Townson, H. & Ham, P. J. Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp. Parasitol. 80, 401-406. (1995).
132. Waterhouse, R. M. et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 316, 1738-1743. (2007).
133. Arensburger, P. et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science. 330, 86-88. (2010).
134. Tsao, I. Y., Chen, J. W., Li, C. J., Lo, H. L., Christensen, B. M. & Chen, C. C. The dual roles of Armigeres subalbatus prophenoloxidase V in parasite melanization and egg chorion melanization in the mosquito Ar. subalbatus. Insect Biochem. Mol. Biol. 64, 68-77. (2015).
135. Shiao, S. H. et al. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol. Biol. 10, 315-321. (2001).
136. Huang, L.H., Christensen, B. M. & Chen, C. C. Molecular cloning of a second prophenoloxidase cDNA from the mosquito Armigeres subalbatus: prophenoloxidase expression in blood-fed and microfilariae-inoculated mosquitoes. Insect Mol. Biol. 10, 87-96. (2001).
137. Zhang, J. et al. Plasmodium yoelii: correlation of up-regulated prophenoloxidase and phenoloxidases with melanization induced by the antimalarial, nitroquine. Exp. Parasitol. 118, 308-314. (2008).
138. Zou, Z. et al. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. Proc. Natl. Acad. Sci. USA. 105, 18454-18459. (2008).
139. Marinotti, O. et al. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell. BMC Dev. Biol. 14, 15. (2014).
140. Gronostajski, R. M. Roles of the NFI/CTF gene family in transcription and development. Gene. 249, 31-45. (2000).
141. Whittle, C. M., Lazakovitch, E., Gronostajski, R. M. & Lieb, J. D. DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I. Proc. Natl. Acad. Sci. USA. 106, 12049-12054. (2009).
142. Durell, S. R., Raghunathan, G. & Guy, H. R. Modeling the ion channel structure of cecropin. Biophys. J. 63, 1623-1631. (1992).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔