(3.232.129.123) 您好!臺灣時間:2021/03/06 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃獻皞
研究生(外文):Hsien-Hao Huang
論文名稱:黑色素细胞刺激素對飢餓肽誘導的進食和腸道蠕動
論文名稱(外文):Alpha-MSH in ghrelin-elicited feeding and gut motility
指導教授:張西川張西川引用關係林進清林進清引用關係陳志彥陳志彥引用關係
指導教授(外文):Shi-Chuan ChangJin-Ching LinChih-Yen Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:105
中文關鍵詞:乙醯化飢餓激素結腸運輸時間糞便顆粒產量食物攝取胃排空腦室內小腸運輸α-黑素細胞刺激素
外文關鍵詞:acyl ghrelincolon transit timefecal pellet outputfood intakegastric emptyingintracerebroventricularsmall intestinal transitα-melanocyte stimulating hormone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:乙醯化飢餓激素誘發的進食量取決於下丘腦神經肽Y和Agouti相關蛋白(AgRP)神經遞質。結腸分泌功能與結腸運動之間的關係尚未探索。腦室內(ICV)注射AgRP通過黑皮質素受體的競爭性拮抗作用增加攝食。作為天然的AgRP拮抗劑的α-黑素細胞刺激素(α-MSH)的ICV施用可調節乙醯化飢餓激素誘發的食慾增加作用。本研究旨在研究α-MSH對大鼠中樞乙醯飢餓激素誘發的食物攝取、胃腸蠕動和結腸分泌的調節作用。
方法:採用長期植入腦室內(ICV)和盲腸內導管的大鼠模型,我們想驗證結腸分泌與結腸運動功能之間的相關性,以及ICV注射體積的作用。也檢查了α-MSH和乙醯化飢餓激素對ICV導管的慢性植入物的意識大鼠食物攝入、胃排空、小腸運輸、結腸運動和分泌的影響。
結果:與生理鹽水對照組(5 μL/大鼠)相比,1 nmol / 5 μL的ICV乙醯化飢餓激素增強了總糞便重量、加快了結腸通過時間、並且在注射後第一個小時增加了糞便顆粒產量,而ICV 1 nmol / 5 μL的去乙醯化飢餓激素只能加速結腸通過時間。當與鹽水對照(10 μL/大鼠)相比,當ICV注射體積增加到10 μL時,乙醯化飢餓激素和去乙醯化飢餓激素對結腸運動性的刺激作用消失。另外,與ICV注射5 μL生理鹽水相比,ICV注射10 μL生理鹽水顯著縮短結腸運輸時間。注射後第一個小時的總糞便重量與ICV乙醯化飢餓激素(1 nmol / 5 μL)後的結腸轉運時間和糞便顆粒產量相關;而注射去乙醯化飢餓激素(1 nmol / 5 μL)後第一個小時的總糞便重量與糞便顆粒輸出相關,但不是結腸轉運時間。
乙醯化飢餓激素(0.1 nmol /大鼠)的ICV注射顯著增加了8小時累積食物攝取量(P < 0.01)、增加非營養半液體胃排空(P < 0.001)、增加了幾何中心和運行百分比小腸運輸(P < 0.001)、結腸運輸時間加快(P < 0.05)、糞便顆粒產量增加(P < 0.01)和糞便總重(P < 0.01)。使用ICV注射α-MSH(1.0和2.0 nmol /大鼠)進行預處理減弱了乙醯化飢餓激素誘導的食慾增加、糞便顆粒產量和總糞便重量,而較高劑量的α-MSH(2.0 nmol /大鼠)小腸運輸幾何中心增加(P < 0.01)。然而,α-MSH的劑量都不改變乙醯化飢餓激素刺激的胃動力學作用,增加小腸運輸的運行百分比,也不會加快結腸傳輸時間。
結論:乙醯化飢餓激素刺激結腸分泌。不同的結腸刺激所產生的結腸分泌並不總是與結腸運輸相關聯。
α-MSH參與中樞乙醯化飢餓激素誘發的餵養,小腸運輸,以及糞便顆粒產量和糞便重量。α-MSH不影響中樞乙醯化飢餓激素誘發大鼠胃排空和結腸運輸時間的加速。
BACGROUND: Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. The relationship between colonic secretory function and colonic motility remains unexplored. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility and colonic secretion in rats.
METHODS: Using a rat model chronically implanted with intracerebroventricular (ICV) and cecal catheters, we validated the correlation between colonic secretion and colonic motor functions, as well as the role of ICV injection volume. We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters.
RESULTS: Compared to saline controls (5 μL/rat), ICV acyl ghrelin at 1 nmol/5 μL enhanced the total fecal weight, accelerated the colonic transit time, and increased the fecal pellet output during the first hour post-injection, while ICV des-acyl ghrelin at 1 nmol/5 μL only accelerated the colonic transit time. These stimulatory effects on colonic motility and/or secretion from acyl ghrelin and des-acyl ghrelin disappeared when the ICV injection volume increased to 10 μL compared with saline controls (10 μL/rat). Additionally, the ICV injection of 10 μL of saline significantly shortened the colonic transit time compared with the ICV injection of 5 μL of saline. The total fecal weight during the first hour post-injection correlated with the colonic transit time and fecal pellet output after the ICV injection of acyl ghrelin (1 nmol/5 μL), whereas the total fecal weight during the first hour post-injection correlated with the fecal pellet output but not the colonic transit time after the ICV injection of des-acyl ghrelin (1 nmol/5 μL).
ICV injection of O-n-octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h (P < 0.01), enhanced non-nutrient semiliquid gastric emptying (P < 0.001), increased the geometric center and running percentage of small intestinal transit (P < 0.001), accelerated colonic transit time (P < 0.05), increased fecal pellet output (P < 0.01) and total fecal weight (P < 0.01). Pre-treatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output and total fecal weight, while the higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit (P < 0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time.
CONCLUSION: Acyl ghrelin stimulates colonic secretion. Colonic secretion does not always correlate with colonic motility in response to different colonic stimulations.
α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, as well as fecal pellet output and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.
Acknowledgments .........................................i
Contents ..............................................iii
中文摘要................................................viii
English Abstract ........................................x

Chapter 1. Introduction..................................1
1.1 Ghrelin..............................................2
1.2 Acyl ghrelin, des-acyl ghrelin and obestatin.........2
1.2.1 Acyl ghrelin.......................................2
1.2.2 Des-acyh ghrelin...................................3
1.2.3 Obestatin..........................................3
1.3 Ghrelin & gastrointestinal motility..................4
1.3.1 Acyl ghrelin on gastrointestinal motility..........4
1.3.2 Des-acyl on gastrointestinal motility..............5
1.4 Interactions between acyl ghrelin and other
neuropeptides in hypothalamus............................6
1.4.1 Acyl ghrelin interacts with NPY and AgRP...........6
1.4.2 Acyl ghrelin interacts with AgRP and MCR...........7
1.5 The aims of our study................................8
1.5.1 The effects of des-acyl ghrelin on colonic secretory
and motoer function......................................8
1.5.2 The effects of α-melanocyte stimulating hormone
modulates the central acyl ghrelin-induced stimulation of
feeding, gastrointestinal motility, and colonic secretion
.........................................................8

Chapter 2. Materials and Methods........................10
2.1 Animals............................................11
2.2 Surgery............................................11
2.2.1 Implantation of the ICV catheter.................11
2.2.2 Implantation of the colonic catheter.............12
2.3 Preparation of drugs...............................13
2.4 Food intake and analysis...........................13
2.5 Gastric emptying and small intestinal transit of a
charcoal, non-nutrient, semi-liquid meal................14
2.6 Colonic motor and secretory function tests.........15
2.6.1 Measurement of the CTT...........................15
2.6.2 Measurement of fecal pellet output and total fecal
weight..................................................15
2.7 Experimental protocols.............................16
2.7.1 Analysis of the effects of ICV injection O-n-
octanoylated ghrelin and α-MSH on foot intake...........16
2.7.2 Analysis of the effects of ICV injection of O-n-
octanoylated ghrelin and α-MSH on gastric emptying......17
2.7.3 Analysis of the effects of ICV injection of O-n-
octanoylated ghrelin and α-MSH on the geometric centric
and running percentage of small intestinal transit......17
2.7.4 Analysis of the effects of ICV injection of O-n-
octanoylated ghrelin and des-acyl ghrelin on the colonic
motor and secretory functions...........................18
2.7.5 Analysis of the effects of ICV injection of O-n-
octanoylated ghrelin and α-MSH on the colonic motor and
seretory functions......................................18
2.8 Statistical analysis...............................19

Chapter 3. Results......................................20
3.1 Results of ICV injection of O-n-octanoylated ghrelin
and/or α-MSH on spontaneous food intake in freely fed
rats....................................................21
3.2 Results of ICV injection of O-n-octanoylated ghrelin
and/or α-MSH on gastric emptying........................21
3.3 Results of ICV injection of O-n-octanoylated ghrelin
and/or α-MSH on the geometric center and running percentage
of small intestinal transit.............................22
3.4 Results of ICV injection of O-n-octanoylated ghrelin
and/or α-MSH on CTT.....................................23
3.4.1 The ICV injection of acyl ghrelin (1 nmol/5 μL/rat)
significantly accelerated the CTT, and increased the fecal
pellet output and total fecal weight during the first hour
post-injection, but des-acyl ghrelin(1 nmol /5 μL/rat)only
significantly accelerated the CTT.......................23
3.4.2 An increased ICV injection volume shortened the CTT,
which led to the disappearance of the colokinetic effects
of acyl ghrelin and des-acyl ghrelin (1 nmol/10 μL/rat)..
........................................................24
3.4.3 Relationships between total fecal weight, CTT, and
fecal pellet output with an ICV injection volume of 5μL..
........................................................24
3.4.4 Relationships between total fecal weight, CTT, and
fecal pellet output during the first hour post-injection
stimulated by acyl ghrelin and des-acyl ghrelin,
respectively, with an ICV injection volume at 5 μL......25
3.4.5 Effects of ICV injection of O-n-octanoylated ghrelin
and/or α-MSH on the CTT, fecal pellet output, total fecal
weight, fecal fluid and dried solid weight..............25

Chapter 4. Food intake..................................27
4.1 Ghrelin elicit food intake.........................28
4.2 α-MSH attenuated the ghrelin-elicited food intake..28

Chapter 5. Gastric empty................................30
5.1 Ghrelin elicit gastric emptying....................31
5.2 α-MSH fails to attenuate the ghrelin-elicited gastric
emptying................................................32

Chapter 6. Small intestinal transit.....................33
6.1 Ghrelin elicit small intestinal transit............34
6.2 α-MSH fails to attenuate the ghrelin-elicited small
intestinal transit......................................34

Chapter 7. Colonic transit..............................36
7.1 The effects of des-acyl ghrelin on colonic secretory
and motor functions.....................................37
7.2 The role of acyl ghrelin & des-acyl ghrelin ICV
injection volume on the colonic secretory and motor
functions...............................................37
7.3 The effects of α-MSH in ghrelin-elicited colonic
transit.................................................38
7.3.1 Ghrelin elicit colonic transit...................38
7.3.2 α-MSH partly attenuates the ghrelin-elicited colonic
transit.................................................39

Chapter 8. Discussion...................................41
8.1 The effects of des-acyl ghrelin on the colonic
secretory and motor function...........................42
8.2 The role of acyl ghrelin & des-acyl ghrelin ICV
injection volume on the colonic motility and secretion..42
8.3 Melanocortins and MC receptors.....................43
8.3.1 MC1 receptor.....................................44
8.3.2 MC2 receptor.....................................44
8.3.3 MC3 receptor.....................................45
8.3.4 MC4 receptor.....................................45
8.3.5 MC5 receptor.....................................46
8.3.6 α-MSH............................................47
8.4 The effects of α-MSH in ghrelin-elicited food intake
........................................................48
8.4.1 Ghrelin elicits food intake......................48
8.4.2 α-MSH attenuated the ghrelin-elicited food intake
........................................................49
8.5 The effects of α-MSH in ghrelin-elicited gastric
emptying................................................49
8.5.1 Ghrelin elicits gastric emptying.................49
8.5.2 α-MSH fails to attenuate the ghrelin-elicited
gastric emptying........................................51
8.6 The effects of α-MSH in ghrelin-elicited small
intestinal transit......................................51
8.6.1 Ghrelin elicits small intestinal transit.........51
8.6.2 α-MSH fails to attenuate the ghrelin-elicited
small intestinal transit................................52
8.7 The effects of α-MSH in ghrelin-elicited colonic
transit.................................................52
8.7.1 Ghrelin elicits colonic transit..................52
8.7.2 α-MSH partly attenuates the ghrelin-elicited
colonic transit.........................................53
Conclusion..............................................54

Figures.................................................55
References..............................................77
1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999 Dec 9;402(6762):656-60.
2. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000 Nov;141(11):4255-61.
3. Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev. 2009 Dec;61(4):430-81.
4. Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini A, Malan D, Baj G, Granata R, Broglio F, Papotti M, Surico N, Bussolino F, Isgaard J, Deghenghi R, Sinigaglia F, Prat M, Muccioli G, Ghigo E, Graziani A. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002 Dec 23;159(6):1029-37.
5. García MC1, López M, Alvarez CV, Casanueva F, Tena-Sempere M, Diéguez C. Role of ghrelin in reproduction. Reproduction. 2007 Mar;133(3):531-40.
6. Thompson NM, Gill DA, Davies R, Loveridge N, Houston PA, Robinson IC, Wells T. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology. 2004 Jan;145(1):234-42.
7. Granata R, Settanni F, Biancone L, Trovato L, Nano R, Bertuzzi F, Destefanis S, Annunziata M, Martinetti M, Catapano F, Ghè C, Isgaard J, Papotti M, Ghigo E, Muccioli G. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology. 2007 Feb;148(2):512-29.
8. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008 Feb 8;132(3):387-96.
9. Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6320-5.
10. Chen CY, Fujimiya M, Laviano A, Chang FY, Lin HC, Lee SD. Modulation of ingestive behavior and gastrointestinal motility by ghrelin in diabetic animals and humans. J Chin Med Assoc. 2010 May;73(5):225-9.
11. Broglio F, Gottero C, Prodam F, Gauna C, Muccioli G, Papotti M, Abribat T, Van Der Lely AJ, Ghigo E. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab. 2004 Jun;89(6):3062-5.
12. Garcia JM, Garcia-Touza M, Hijazi RA, Taffet G, Epner D, Mann D, Smith RG, Cunningham GR, Marcelli M. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab. 2005 May;90(5):2920-6.
13. Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun. 2000 Dec 29;279(3):909-13.
14. Yoshimoto A, Mori K, Sugawara A, Mukoyama M, Yahata K, Suganami T, Takaya K, Hosoda H, Kojima M, Kangawa K, Nakao K. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol. 2002 Nov;13(11):2748-52.
15. Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem. 2000 Jul 21;275(29):21995-2000.
16. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science. 2005 Nov 11;310(5750):996-9.
17. Kojima M, Kangawa K. Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract. Curr Opin Pharmacol. 2002 Dec;2(6):665-8.
18. Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M. Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol. 2003 Jul 1;550(Pt 1):227-40.
19. Inui A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci. 2001 Aug;2(8):551-60.
20. Chen CY, Tsai CY. From endocrine to rheumatism: do gut hormones play roles in rheumatoid arthritis? Rheumatology (Oxford). 2014 Feb;53(2):205-12.
21. Chen CY, Tsai CY, Lee WJ, Liaw WJ, Chiang CH, Ho ST, Lee SD. Intracerebroventricular O-n-octanoylated ghrelin and its splice variant-induced feeding is blocked by insulin, independent of obestatin or CRF receptor, in satiated rats. Nutrition. 2012 Jul;28(7-8):812-20.
22. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001 Dec;86(12):5992.
23. Shimbara T, Mondal MS, Kawagoe T, Toshinai K, Koda S, Yamaguchi H, Date Y, Nakazato M. Central administration of ghrelin preferentially enhances fat ingestion. Neurosci Lett. 2004 Oct 7;369(1):75-9.
24. Tebbe JJ, Tebbe CG, Mronga S, Ritter M, Schäfer MK. Central neuropeptide Y receptors are involved in 3rd ventricular ghrelin induced alteration of colonic transit time in conscious fed rats. BMC Gastroenterol. 2005 Feb 18;5:5.
25. Muscaritoli M, Molfino A, Chiappini MG, Laviano A, Ammann T, Spinsanti P, Melchiorri D, Inui A, Alegiani F, Rossi Fanelli F. Anorexia in hemodialysis patients: the possible role of des-acyl ghrelin. Am J Nephrol. 2007;27(4):360-5.
26. Chen CY, Inui A, Asakawa A, Fujino K, Kato I, Chen CC, Ueno N, Fujimiya M. Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats. Gastroenterology. 2005 Jul;129(1):8-25.
27. Asakawa A, Inui A, Fujimiya M, Sakamaki R, Shinfuku N, Ueta Y, Meguid MM, Kasuga M. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut. 2005 Jan;54(1):18-24.
28. Banks WA, Tschöp M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther. 2002 Aug;302(2):822-7.
29. Seoane LM, López M, Tovar S, Casanueva FF, Señarís R, Diéguez C. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothalamus. Endocrinology. 2003 Feb;144(2):544-51.
30. Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, Nakazato M. Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept. 2005 Mar 15;126(1-2):55-9.
31. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology. 2000 Dec;141(12):4797-800.
32. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001 Nov;50(11):2438-43.
33. Wang L, Saint-Pierre DH, Taché Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y - synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett. 2002 May 31;325(1):47-51.
34. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998 Aug;1(4):271-2.
35. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature. 2001 Jan 11;409(6817):194-8.
36. Willesen MG, Kristensen P, Rømer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999 Nov;70(5):306-16.
37. Hewson AK, Dickson SL. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol. 2000 Nov;12(11):1047-9.
38. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K, Nakao K. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes. 2001 Feb;50(2):227-32.
39. Tschöp M, Statnick MA, Suter TM, Heiman ML. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology. 2002 Feb;143(2):558-68.
40. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van der Ploeg LH, Howard AD, MacNeil DJ, Qian S. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004 Jun;145(6):2607-12.
41. Tamura H, Kamegai J, Shimizu T, Ishii S, Sugihara H, Oikawa S. Ghrelin stimulates GH but not food intake in arcuate nucleus ablated rats. Endocrinology. 2002 Sep;143(9):3268-75.
42. Keen-Rhinehart E, Bartness TJ. NPY Y1 receptor is involved in ghrelin- and fasting-induced increases in foraging, food hoarding, and food intake. Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1728-37.
43. Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 1998 Oct;139(10):4428-31.
44. Hagan MM, Rushing PA, Pritchard LM, Schwartz MW, Strack AM, Van Der Ploeg LH, Woods SC, Seeley RJ. Long-term orexigenic effects of AgRP-(83---132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R47-52.
45. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997 Oct 3;278(5335):135-8.
46. Shutter JR, Graham M, Kinsey AC, Scully S, Lüthy R, Stark KL. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 1997 Mar 1;11(5):593-602.
47. Mountjoy KG. The human melanocyte stimulating hormone receptor has evolved to become "super-sensitive" to melanocortin peptides. Mol Cell Endocrinol. 1994 Jun;102(1-2):R7-11.
48. Tsujii S, Bray GA. Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res Bull. 1989 Sep;23(3):165-9.
49. Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R247-58.
50. Ting CH, Chi CW, Li CP, Chen CY. Differential modulation of endogenous cannabinoid CB1 and CB2 receptors in spontaneous and splice variants of ghrelin-induced food intake in conscious rats. Nutrition. 2015 Jan;31(1):230-5.
51. Yeh C, Ting CH, Doong ML, Chi CW, Lee SD, Chen CY. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Drug Des Devel Ther. 2016 Oct 3;10:3281-3290.
52. Chen CY, Doong ML, Li CP, Liaw WJ, Lee HF, Chang FY, Lin HC, Lee SD. A novel simultaneous measurement method to assess the influence of intracerebroventricular obestatin on colonic motility and secretion in conscious rats. Peptides. 2010 Jun;31(6):1113-7.
53. Chen CY, Chien EJ, Chang FY, Lu CL, Luo JC, Lee SD. Impacts of peripheral obestatin on colonic motility and secretion in conscious fed rats. Peptides. 2008 Sep;29(9):1603-8.
54. Ting CH, Chen YC, Liaw WJ, Lin HC, Chen CY. Peripheral injection of pancreatic polypeptide enhances colonic transit without eliciting anxiety or altering colonic secretion in rats. Neuropeptides. 2016 Feb;55:67-71.
55. Chen CY, Chao Y, Chang FY, Chien EJ, Lee SD, Doong ML. Intracisternal des-acyl ghrelin inhibits food intake and non-nutrient gastric emptying in conscious rats. Int J Mol Med. 2005 Oct;16(4):695-9.
56. Doong ML, Lu CC, Kau MM, Tsai SC, Chiao YC, Chen JJ, Yeh JY, Lin H, Huang SW, Chen TS, Chang FY, Wang PS. Inhibition of gastric emptying and intestinal transit by amphetamine through a mechanism involving an increased secretion of CCK in male rats. Br J Pharmacol. 1998 Jul;124(6):1123-30.
57. Chen CY, Doong ML, Chien EJ, Luo JC, Lu CL, Lin HC, Chang FY, Lee SD. Intracerebroventricular ghrelin enhances non-nutrient semiliquid gastric emptying in fasted conscious rats. Gastroenterol J Taiwan. 2008, 25(3):242-8.
58. Charoenthongtrakul S, Giuliana D, Longo KA, Govek EK, Nolan A, Gagne S, Morgan K, Hixon J, Flynn N, Murphy BJ, Hernández AS, Li J, Tino JA, Gordon DA, DiStefano PS, Geddes BJ. Enhanced gastrointestinal motility with orally active ghrelin receptor agonists. J Pharmacol Exp Ther. 2009 Jun;329(3):1178-86.
59. Verhulst PJ, De Smet B, Saels I, Thijs T, Ver Donck L, Moechars D, Peeters TL, Depoortere I. Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice. Gastroenterology. 2008 Oct;135(4):1267-76.
60. Guo ZF, Ren AJ, Zheng X, Qin YW, Cheng F, Zhang J, Wu H, Yuan WJ, Zou L. Different responses of circulating ghrelin, obestatin levels to fasting, re-feeding and different food compositions, and their local expressions in rats. Peptides. 2008 Jul;29(7):1247-54.
61. Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schürmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschöp MH. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med. 2009 Jul;15(7):741-5.
62. Liu J, Prudom CE, Nass R, Pezzoli SS, Oliveri MC, Johnson ML, Veldhuis P, Gordon DA, Howard AD, Witcher DR, Geysen HM, Gaylinn BD, Thorner MO. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J Clin Endocrinol Metab. 2008 May;93(5):1980-7.
63. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000 Nov;141(11):4325-8.
64. Huang HH, Chen LY, Doong ML, Chang SC, Chen CY. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion. Drug Des Devel Ther. 2017 Aug 16;11:2377-2386.
65. Lucas N, Legrand R, Ouelaa W, Breton J, Tennoune N, Bole-Feysot C, Déchelotte P, Fetissov SO. Effects of rabbit anti-α-melanocyte-stimulating hormone (α-MSH) immunoglobulins on α-MSH signaling related to food intake control. Neuropeptides. 2014 Feb;48(1):21-7.
66. Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E. Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab. 2006 Sep;91(9):3296-302.
67. Falkén Y, Webb DL, Abraham-Nordling M, Kressner U, Hellström PM, Näslund E. Intravenous ghrelin accelerates postoperative gastric emptying and time to first bowel movement in humans. Neurogastroenterol Motil. 2013 Jun;25(6):474-80.
68. Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, Hosoda H, Kojima M, Kangawa K. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun. 2000 Oct 5;276(3):905-8.
69. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001 Feb;120(2):337-45.
70. Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun. 2001 Jan 26;280(3):904-7.
71. Fukuda H, Mizuta Y, Isomoto H, Takeshima F, Ohnita K, Ohba K, Omagari K, Taniyama K, Kohno S. Ghrelin enhances gastric motility through direct stimulation of intrinsic neural pathways and capsaicin-sensitive afferent neurones in rats. Scand J Gastroenterol. 2004 Dec;39(12):1209-14.
72. Ishiguchi T, Amano T, Matsubayashi H, Tada H, Fujita M, Takahashi T. Centrally administered neuropeptide Y delays gastric emptying via Y2 receptors in rats. Am J Physiol Regul Integr Comp Physiol. 2001 Nov;281(5):R1522-30.
73. Matsuda M, Aono M, Moriga M, Okuma M. Centrally administered neuropeptide Y (NPY) inhibits gastric emptying and intestinal transit in the rat. Dig Dis Sci. 1993 May;38(5):845-50.
74. Allen JM, Fitzpatrick ML, Yeats JC, Darcy K, Adrian TE, Bloom SR. Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion. 1984;30(4):255-62.
75. Trudel L, Tomasetto C, Rio MC, Bouin M, Plourde V, Eberling P, Poitras P. Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat. Am J Physiol Gastrointest Liver Physiol. 2002 Jun;282(6):G948-52.
76. Duggan JP, Booth DA. Obesity, overeating, and rapid gastric emptying in rats with ventromedial hypothalamic lesions. Science. 1986 Feb 7;231(4738):609-11.
77. Inui A. Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res. 1999 Sep 15;59(18):4493-501.
78. Edholm T, Levin F, Hellström PM, Schmidt PT. Ghrelin stimulates motility in the small intestine of rats through intrinsic cholinergic neurons. Regul Pept. 2004 Sep 15;121(1-3):25-30.
79. Yang CG, Qiu WC, Wang ZG, Yu S, Yan J, Zheng Q. Down-regulation of ghrelin receptors in the small intestine delays small intestinal transit in vagotomized rats. Mol Med Rep. 2011 Nov-Dec;4(6):1061-5.
80. Sallam HS, Oliveira HM, Gan HT, Herndon DN, Chen JD. Ghrelin improves burn-induced delayed gastrointestinal transit in rats. Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R253-7.
81. Qiu WC, Wang ZG, Lv R, Wang WG, Han XD, Yan J, Wang Y, Zheng Q, Ai KX. Ghrelin improves delayed gastrointestinal transit in alloxan-induced diabetic mice. World J Gastroenterol. 2008 Apr 28;14(16):2572-7.
82. Panaro BL, Tough IR, Engelstoft MS, Matthews RT, Digby GJ, Møller CL, Svendsen B, Gribble F, Reimann F, Holst JJ, Holst B, Schwartz TW, Cox HM, Cone RD. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab. 2014 Dec 2;20(6):1018-29.
83. Savage AP, Adrian TE, Carolan G, Chatterjee VK, Bloom SR. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut. 1987 Feb;28(2):166-70.
84. Lin HC, Neevel C, Chen JH. Slowing intestinal transit by PYY depends on serotonergic and opioid pathways. Am J Physiol Gastrointest Liver Physiol. 2004 Apr;286(4):G558-63.
85. Tebbe JJ, Mronga S, Tebbe CG, Ortmann E, Arnold R, Schäfer MK. Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Y1- and corticotrophin-releasing factor 1 receptor activation. J Neuroendocrinol. 2005 Sep;17(9):570-6.
86. Venkova K, Mann W, Nelson R, Greenwood-Van Meerveld B. Efficacy of ipamorelin, a novel ghrelin mimetic, in a rodent model of postoperative ileus. J Pharmacol Exp Ther. 2009 Jun;329(3):1110-6.
87. Pustovit RV, Furness JB, Rivera LR. A ghrelin receptor agonist is an effective colokinetic in rats with diet-induced constipation. Neurogastroenterol Motil. 2015 May;27(5):610-7.
88. Hirayama H, Shiina T, Shima T, Kuramoto H, Takewaki T, B Furness J, Shimizu Y. Contrasting effects of ghrelin and des-acyl ghrelin on the lumbo-sacral defecation center and regulation of colorectal motility in rats. Neurogastroenterol Motil. 2010 Oct;22(10):1124-31.
89. Garrick T, Mulvihill S, Buack S, Maeda-Hagiwara M, Tache Y. Intracerebroventricular pressure inhibits gastric antral and duodenal contractility but not acid secretion in conscious rabbits. Gastroenterology. 1988 Jul;95(1):26-31.
90. Kao CH, ChangLai SP, Chieng PU, Yen TC. Gastric emptying in head-injured patients. Am J Gastroenterol. 1998 Jul;93(7):1108-12.
91. McArthur CJ, Gin T, McLaren IM, Critchley JA, Oh TE. Gastric emptying following brain injury: effects of choice of sedation and intracranial pressure. Intensive Care Med. 1995 Jul;21(7):573-6.
92. Huang HH, Ting CH, Syu YF, Chang SC, Chen CY. Correlation between colonic secretion and colonic motility in rats: Role of ghrelin. World J Gastroenterol. 2016 Dec 14;22(46):10140-10147.
93. Tough IR, Forbes S, Tolhurst R, Ellis M, Herzog H, Bornstein JC, Cox HM. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y₁ and Y₂ receptors. Br J Pharmacol. 2011 Sep;164(2b):471-84.
94. Suzuki M, Narita M, Ashikawa M, Furuta S, Matoba M, Sasaki H, Yanagihara K, Terawaki K, Suzuki T, Uezono Y: Changes in the melanocortin receptors in the hypothalamus of a rat model of cancer cachexia. Synapse 2012, 66(8):747-751.
95. Fujitsuka N1, Asakawa A, Uezono Y, Minami K, Yamaguchi T, Niijima A, Yada T, Maejima Y, Sedbazar U, Sakai T, Hattori T, Kase Y, Inui A. Potentiation of ghrelin signaling attenuates cancer anorexia-cachexia and prolongs survival. Transl Psychiatry. 2011 Jul 26;1:e23.
96. Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R. Neurons containing beta-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1591-5.
97. Bloom FE, Battenberg EL, Shibasaki T, Benoit R, Ling N, Guillemin R. Localization of gamma-melanocyte stimulating hormone (gamma MSH) immunoreactivity in rat brain and pituitary. Regul Pept. 1980 Dec;1(3):205-22.
98. Jacobowitz DM, O'Donohue TL. alpha-Melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6300-4.
99. Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res. 1996;51:287-317; discussion 318.
100. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T. Molecular cloning of a novel melanocortin receptor. J Biol Chem. 1993 Apr 15;268(11):8246-50.
101. Gantz I, Miwa H, Konda Y, Shimoto Y, Tashiro T, Watson SJ, DelValle J, Yamada T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem. 1993 Jul 15;268(20):15174-9.
102. Griffon N, Mignon V, Facchinetti P, Diaz J, Schwartz JC, Sokoloff P. Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem Biophys Res Commun. 1994 Apr 29;200(2):1007-14.
103. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science. 1992 Aug 28;257(5074):1248-51.
104. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8856-60.
105. Xia Y, Wikberg JE, Chhajlani V. Expression of melanocortin 1 receptor in periaqueductal gray matter. Neuroreport. 1995 Nov 13;6(16):2193-6.
106. Schiöth HB, Muceniece R, Larsson M, Wikberg JE. The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J Endocrinol. 1997 Oct;155(1):73-8.
107. Kask A, Mutulis F, Muceniece R, Pähkla R, Mutule I, Wikberg JE, Rägo L, Schiöth HB. Discovery of a novel superpotent and selective melanocortin-4 receptor antagonist (HS024): evaluation in vitro and in vivo. Endocrinology. 1998 Dec;139(12):5006-14.
108. Xia Y, Wikberg JE. Localization of ACTH receptor mRNA by in situ hybridization in mouse adrenal gland. Cell Tissue Res. 1996 Oct;286(1):63-8.
109. Schiöth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JE. Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci. 1996;59(10):797-801.
110. Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int. 1996 Feb;38(1):73-80.
111. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology. 2000 Sep;141(9):3518-21.
112. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet. 2000 Sep;26(1):97-102..
113. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet. 1999 Jan;21(1):119-22.
114. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, Marsh DJ, Forrest MJ, Gopal-Truter S, Fisher J, Camacho RE, Strack AM, Mellin TN, MacIntyre DE, Chen HY, Van der Ploeg LH. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 2000 Apr;9(2):145-54.
115. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. 1994 Oct;8(10):1298-308.
116. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997 Jan 10;88(1):131-41.
117. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998 Oct;20(2):113-4.
118. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998 Oct;20(2):111-2.
119. Kask A, Rägo L, Mutulis F, Pähkla R, Wikberg JE, Schiöth HB. Selective antagonist for the melanocortin 4 receptor (HS014) increases food intake in free-feeding rats. Biochem Biophys Res Commun. 1998 Apr 7;245(1):90-3.
120. Harrold JA, Widdowson PS, Williams G. Altered energy balance causes selective changes in melanocortin-4(MC4-R), but not melanocortin-3 (MC3-R), receptors in specific hypothalamic regions: further evidence that activation of MC4-R is a physiological inhibitor of feeding. Diabetes. 1999 Feb;48(2):267-71.
121. Gantz I, Shimoto Y, Konda Y, Miwa H, Dickinson CJ, Yamada T. Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem Biophys Res Commun. 1994 May 16;200(3):1214-20.
122. Fathi Z, Iben LG, Parker EM. Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem Res. 1995 Jan;20(1):107-13.
123. Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell. 1997 Dec 12;91(6):789-98.
124. Delbende C, Jegou S, Tranchand-Bunel D, Leroux P, Tonon MC, Mocaër E, Pelletier G, Vaudry H. Role of alpha-MSH and related peptides in the central nervous system. Rev Neurol (Paris). 1985;141(6-7):429-39.
125. Eskay RL, Giraud P, Oliver C, Brown-Stein MJ. Distribution of alpha-melanocyte-stimulating hormone in the rat brain: evidence that alpha-MSH-containing cells in the arcuate region send projections to extrahypothalamic areas. Brain Res. 1979 Dec 7;178(1):55-67.
126. Jonsson L, Skarphedinsson JO, Skuladottir GV, Atlason PT, Eiriksdottir VH, Franzson L, Schiöth HB. Melanocortin receptor agonist transiently increases oxygen consumption in rats. Neuroreport. 2001 Dec 4;12(17):3703-8.
127. Adan RA, Szklarczyk AW, Oosterom J, Brakkee JH, Nijenhuis WA, Schaaper WM, Meloen RH, Gispen WH. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. Eur J Pharmacol. 1999 Aug 13;378(3):249-58.
128. Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Maratos-Flier E. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol. 1998 Apr;274(4 Pt 1):E627-33.
129. Lucas N, Legrand R, Breton J, Déchelotte P, Edwards-Lévy F, Fetissov SO. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight. Neuroscience. 2015 Apr 2;290:445-53.
130. Vehapoğlu A, Türkmen S, Terzioğlu Ş. Alpha-Melanocyte-Stimulating Hormone and Agouti-Related Protein: Do They Play a Role in Appetite Regulation in Childhood Obesity? J Clin Res Pediatr Endocrinol. 2016 Mar 5;8(1):40-7.
電子全文 電子全文(網際網路公開日期:20230130)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔