跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇宇平
研究生(外文):Yu-Ping Su
論文名稱:機械性剪力與脂肪激素之生化效應對於人類軟骨細胞的影響與退化性關節炎之生成
論文名稱(外文):The Mechanical Shear and Biochemical Leptin/Resistin Effect on Human Chondrocytes and Consequent Osteoarthritis Development
指導教授:羅俊民
指導教授(外文):Chun-Min Lo
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:58
中文關鍵詞:關節炎脂肪激素瘦素阻抗素骨塑型蛋白剪力
外文關鍵詞:osteoarthritisadipokineleptinresistinBMPshear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
退化性關節炎隨著人口的老化已經成為全世界所有健康照護系統的一大負擔。關節炎的生成是受到許多因素的影響,臨床上常把這些影響分類為外因性或內因性。然而在病生理機轉上,它的生成與軟骨組織的恆定調節有著密不可分的關係。肥胖長久以來都被認為是增加機械力負擔的危險因子,然而隨著脂肪激素的發現, 它在生物化學上對於退化性關節炎的生成的影響,開啟了人們對於關節炎病生理上新的視野。一個完整的治療方案必須透過對於力學性與生物性訊息相互作用在軟骨組織上的了解才能完成。
骨塑型蛋白(bone morphogenic protein, BMP)對於軟骨的生成可提供正向調控的作用,然而在健康的關節軟骨內卻很少發現它們的存在。有些研究發現在受關節炎破壞的軟骨中可以發現BMP的存在,但是仍不確定它們在這其中所扮演的角色。另外有研究在肥胖者的關節中發現極高濃度的瘦素(leptin),而且和關節炎的產生有著密切相關。我們第一個研究旨在探討人類初代軟骨細胞在瘦素的刺激下是否會激發BMP的產生?而其中機轉又是如何? 本研究顯示在瘦素的刺激下,人類初代軟骨細胞的第二型環氧合酶(COX-2)和BMP-2會增加表現,而BMP-4,6 和 7則無。再者,該BMP-2 的誘增是藉由上調JAK2-ERK1/2促進Ser727的磷酸化以激活STAT3路徑。值得注意的是,組織蛋白去乙醯酶HDAC中的 HDAC-3和HDAC-4都有參與該BMP-2 的誘增,但是所經由的路徑不同。HDAC-3會和STAT形成複合體共同作用,而HDAC-4則是透過其他路徑來調控BMP-2 的誘增。另外,BMP-2的增加會促進軟骨細胞製造第二型膠原蛋白(typeII collagen)。本研究確認了人類初代軟骨細胞在瘦素的刺激發炎作用會藉由BMP-2的自分泌效應(autocrine effect)啟動修復作用,並明確描述其中的分子生物學機轉,對於將來發展新藥有重要參考價值。
有些研究曾提出低度剪應力在調控軟骨恆定中可以扮演修復的角色;而近來有流行病學研究顯示血液和血清中的阻抗素(resistin)濃度和患者的關節炎嚴重度有正相關。然而低度剪應力對於關節炎軟骨細胞在受到阻抗素刺激下所引發的分解代謝(catabolic effect)是否有調節作用則仍不清楚。因此我們的第二個研究旨在釐清低度剪應力是否可以調控人類軟骨細胞在阻抗素刺激下由COX-2所引發的分解代謝。在本實驗中使用人類初代軟骨細胞和SW1343惡性軟骨肉瘤細胞株進行研究。兩種低度應力(2 dyn/cm2)模式被施予在接受阻抗素刺激軟骨細胞:刺激前施予(pre-shear)和刺激後施予(post-shear),藉以研究COX-2表現的不同;更進一步利用各種專一性的活化因子和沉默核醣核酸(siRNA)來研究細部調控機轉。我們發現軟骨細胞在阻抗素刺激下COX-2的表現會在不同低剪力施予模式下產生截然不同的反應。阻抗素刺激前施予低剪力會降低COX-2表現,而刺激後施予則會增強其表現。Pre-shear效應是透過抑制(NF)-kB-p65 subunit和cAMP結合蛋白來達成,post-shear效應則是只有透過活化(NF)-kB-p65 subunit表現來完成。而兩者最後都是透過AMPK路徑的激活再經sirtuin 1 (長壽蛋白-1)表現來調控COX-2生成。本研究釐清了低剪力應力對於調控阻抗素所引起的軟骨細胞發炎反應的詳細機轉,並或許可以指引其應用在產生修復作用。
Osteoarthritis is one of the major burden of health care system worldwide and earning more attentions along with aging of population. Its development can be attributed to extrinsic or intrinsic factors but, in pathophysiology, all are closely related to the homeostasis of cartilage. Obesity has been taken as a mechanical risk factor for the progress of osteoarthritis. However, its biochemical influence on osteoarthritis has opened a new window since the discovery of adipokines. Treatment of osteoarthritis cannot be completed without understanding the crosstalk between mechanical and biological signaling.
Bone morphogenetic proteins (BMPs) play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. Recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA) development. The aim of our first study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism. We found that expression of COX-2 as well as BMP-2 mRNA, but not BMP-4, BMP-6, or BMP-7 mRNA, could be increased in human primary chondrocytes under leptin stimulation. Moreover, this BMP-2 induction was mediated through transcription factor-signal transducer and activator of transcription (STAT) 3 activation via JAK2-ERK1/2-induced Ser727-phosphorylation. Of note, histone deacetylases (HDACs) 3 and 4 were both involved in modulating leptin-induced BMP-2 mRNA expression through different pathways: HDAC3, but not HDAC4, associated with STAT3 to form a complex. Our results further demonstrated that the role of BMP-2 induction under leptin stimulation is to increase collagen II expression. The findings in this study provide new insights into the regulatory mechanism of BMP-2 induction in leptin-stimulated chondrocytes and suggest that BMP-2 may play a reparative role in regulating leptininduced OA development.
Low shear stress has been proposed to play a reparative role in modulating cartilage homeostasis. Recently, epidemiological studies have found a positive correlation between the resistin level in serum and synovial fluid and osteoarthritis (OA) severity in patients. However, the effect of low shear stress on the catabolic stimulation of resistin in OA chondrocytes remains unclear. Hence, our second study was to investigate whether low shear stress could regulate resistin-induced catabolic cyclooxygenase (COX)-2 expression in human OA chondrocytes and the underlying mechanism. Human OA chondrocytes and SW1353 chondrosarcoma cells were used in this study. Two modes of low shear stress (2 dyn/cm2), pre-shear and post-shear, were applied to the chondrocytes. A specific activator and siRNAs were used to investigate the mechanism of low shear stress-regulated COX-2 expression of resistin induction. We found that human OA chondrocytes exposed to different modes of low shear stress elicit an opposite effect on resistin-induced COX-2 expression: pre-shear for a short duration attenuates the resistin effect by inhibiting the transcription factor nuclear factor (NF)-kB-p65 subunit and the cAMP response element binding protein; however, post-shear over a longer duration enhances the resistin effect by activating only the NFkB-p65 subunit. Moreover, our results demonstrated that the regulation of both shear modes in resistin-stimulated COX-2 expression occurs through increasing AMP-activated protein kinase activation and then sirtuin 1 expression. This study elucidates the detailed mechanism of low shear stress regulating the resistin-induced catabolic COX-2 expression and indicates a possible reparative role of moderate shear force in resistin-stimulated OA development.
Contents

摘要 i
Abstract iii
Contents v
List of Figures viii

Chapter 1
Molecular insights of osteoarthritis chondrocytes involving mechanical stresses, adipokines and bone morphogenic proteins 1
1.1 Osteoarthritis 1
1.2 Mechanical Stresses 2
1.3 Adipokines 3
1.4 Bone morphogenic proteins 5
Chapter 2
Upregulation of Bone Morphogenetic Protein-2 Synthesis and Consequent Collagen II Expression in Leptin-stimulated Human Chondrocytes 7
2.1 Introduction 7
2.2 Materials and methods 8
2.2.1 Materials 8
2.2.2 Cell culture 9
2.2.3 Quantitative real-time PCR 9
2.2.4 Western blot analysis 10
2.2.5 siRNA transfection 10
2.2.6 Immunoprecipitation 10
2.2.7 Chromatin immunoprecipitation (ChIP) assay 10
2.2.8 Statistical analysis 11
2.3 Results 12
2.3.1 Leptin induces BMP-2 expression in human primary chondrocytes 12
2.3.2 Leptin-induced BMP-2 mRNA expression is mediated by JAK2-ERK1/2 signaling in human primary chondrocytes 12
2.3.3 STAT3 regulates leptin-induced BMP-2 mRNA in human primary chondrocytes 12
2.3.4 HDAC3/4 mediate leptin-induced BMP-2 mRNA expression in human primary chondrocytes 13
2.3.5 STAT3-HDAC3 and HDAC4 are divergent pathways mediating leptininduced BMP-2 mRNA expression in human primary chondrocytes 13
2.3.6 BMP-2 induction in leptin-stimulated human primary chondrocytes increases collagen II expression 14
2.4 Discussion 15

Chapter 3
Low shear stress attenuates COX-2 expression induced by resistin in human osteoarthritic chondrocytes 25

3.1 Introduction 25
3.2 Materials and Methods 27
3.2.1 Materials 27
3.2.2 Cell culture 27
3.2.3 Shear stress experiment 27
3.2.4 Quantitative real-time PCR 28
3.2.5 Western blot analysis 28
3.2.6 Reporter gene construct, siRNA, transfection, and luciferase assays 28
3.2.7 NF-kB and CREB activation ELISA assays 29
3.2.8 Statistical analysis 29
3.3 Results 30
3.3.1 Pre- and post-shear (2 dyn/cm2) effects on human OA chondrocytes result in differential regulations on resistin-induced COX-2 expression 30
3.3.2 Pre- and post-shear effects on human SW1353 chondrocytes result in differential regulations in resistin-increased COX-2 promoter activity 30
3.3.3 AMPK/SIRT1 signaling regulates the attenuated effect of pre-shear stress on resistin-induced COX-2 expression in human OA chondrocytes 31
3.3.4 AMPK/SIRT1 signaling regulates NF-kB and CREB activity under the pre-shear-inhibited resistin effect on human OA chondrocytes 32
3.3.5 AMPK/SIRT1 signaling regulates the enhancement of post-shear on resistin-induced COX-2 expression in human OA chondrocytes 32
3.3.6 AMPK signaling regulates NF-kB, but not CREB, activity under post-shear-enhanced resistin-induced COX-2 expression of human OA chondrocytes 32
3.4 Discussion 34
References 45

List of figures
Chapter 2
Figure 2-1 Leptin induces BMP-2 expression in human primary chondrocytes 18
Figure 2-2 Leptin-induced BMP-2 mRNA expression via JAK2-ERK 1/2 19
Figure 2-3 STAT3 regulates leptin-induced BMP-2 mRNA expression 20
Figure 2-4 HDAC3/4 mediates leptin-induced BMP-2 mRNA expression 21
Figure 2-5 STAT3-HDAC3 & HDAC4: divergent pathways for leptin-induced BMP-2 22
Figure 2-6 Leptin-induced BMP-2 increases collagen II expression 23
Figure 2-7 Signaling pathways: Leptin-induced BMP-2 increases collagen II 24

Chapter 3
Figure 3.1 Experimental setup for pre-shear and post-shear modes 37
Figure 3.2 Attenuation / enhancement of COX-2 expression modulated by shear stress
on human OA chondrocytes 38
Figure 3.3 Role of NF-kB & CREB regulating COX-2 response to shear stress on hum
-an SW1353 chondrocytes 39
Figure 3.4 AMPK/SIRT1 signaling for pre-shear attenuation of COX-2 on human OA chondrocytes 40
Figure 3.5 AMPK/SIRT1 signaling via NF-kB & CREB for pre-shear attenuation of
COX-2 on human OA chondrocytes 41
Figure 3.6 AMPK/SIRT1 signaling for post-shear enhancement of COX-2 on human
OA chondrocytes 42
Figure 3.7 AMPK signaling acts through NF-kB but not CREB for post-shear enhance
-ment of COX-2 43
Figure 3.8 Signaling pathway: effects of low shear stress on resistin-induced COX-2
expression 44
References
(for Chapter 1)
Biver E, Hardouin P, Caverzasio J. The ‘‘bone morphogenic proteins’’ pathways in bone and joint diseases:Translational perspectives from physiopathology to therapeutic targets. Cytokine & Growth Factor Reviews 24 (2013) 69–81
Blaney Davidson EN, Vitters EL, van Beuningen HM, van de Loo FA, van den Berg WB, van der Kraan PM. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis and Rheumatism 2007;56:4065–73.
Blaney Davidson EN, Vitters EL, van Lent PL, van de Loo FA, van den Berg WB, van der Kraan PM. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Research and Therapy 2007;9:R102.
Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis and Rheumatism 2003;48:2501–8.
Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol 2005;174:5789–95.
Boon MR, van der Horst G, van der Pluijm G, Tamsma JT, Smit JW, Rensen PC. Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine and Growth Factor Reviews 2011;22:221–9.
Chang SF, Hsieh RZ, Huang KC, Chang CA, Chiu FY, Kuo HC, Chen CN, Su YP. 2015. Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen II expression in leptin-stimulated human chondrocytes. PLoS ONE 10:e0144252.
Charlier E, Malaise O, Zeddou M, Neuville S, Cobraiville G, Deroyer C, Sanchez C, Gillet P, Kurth W, de Seny D, et al. Restriction of spontaneous and prednisolone-induced leptin production to dedifferentiated state in human hip OA chondrocytes: Role of Smad1 and _-catenin activation. Osteoarthr. Cartil. 2016, 24, 315–324.
Charlier E, Relic B, Celine D, et al. Insights on molecular mechanism of chondrocytes death in osteoarthritis. Int J Mol Sci 17(2016) 2146-81
Chen AL, Fang C, Liu C, Leslie MP, Chang E, Di Cesare PE. Expression of bone morphogenetic proteins, receptors, and tissue inhibitors in human fetal, adult, and osteoarthritic articular cartilage. Journal of Orthopaedic Research 2004;22:1188–92.
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295.
Daghestani HN, Kraus VB. 2015. Inflammatory biomarkers in osteoarthritis. Osteoarthritis Cartilage 23:1890–1896.
D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Human chondrocyte apoptosis in response to mechanical injury. Osteoarthr. Cartil. 2001, 9, 712–719.
Dell’Accio F, De Bari C, El Tawil NM, et al. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Research and Therapy 2006;8:R139.
Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003, 48, 3118–3129.
Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. Journal of Bone and Joint Surgery 2003;85-A(Suppl. 3):59–66.
Gabay O, Sanchez C, Dvir-Ginzberg M, Gagarina V, Zaal KJ, Song Y, He XH, McBurney MW. 2013. Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum 65:159–166.
Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann. Intern. Med. 2000, 133, 321–328.
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. 2015. Osteoarthritis. Lancet 386:376–387.
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. 2008. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 67:iii75–iii82.
Goldring MB, Goldring SR. Osteoarthritis. J. Cell. Physiol. 2007, 213, 626–634
Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F. 2012. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise. Arthritis Rheum 64:443–453.
Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW, Konstantopoulos K. Divergent responses of chondrocytes and endothelial cells to shear stress: Cross-talk among COX-2, the phase 2 response, and apoptosis. Proc. Natl. Acad. Sci. USA 2005, 102, 14010–14015.
Honsawek S, Chayanupatkul M, Tanavalee A, et al. Relationship of plasma and synovial fluid BMP-7 with disease severity in knee osteoarthritis patients: a pilot study. International Orthopaedics 2009;33:1171–5.
Huang Z, Li J, Du S, Chen G, Qi Y, Huang L, Xiao L, Tong P. Effects of UCP4 on the Proliferation and Apoptosis of Chondrocytes: Its Possible Involvement and Regulation in Osteoarthritis. PLoS ONE 2016, 11, e0150684.
Huang ZM, Du SH, Huang LG, Li JH, Xiao L, Tong P. Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthr. Cartil. 2016, 24, 1246–1253.
Im HJ, Pacione C, Chubinskaya S, Van Wijnen AJ, Sun Y, Loeser RF. Inhibitory effects of insulin-like growth factor-1 and osteogenic protein-1 on fibronectin fragment- and interleukin-1beta-stimulated matrix metalloproteinase-13 expression in human chondrocytes. Journal of Biological Chemistry 2003;278:25386–94.
Jeffrey JE, Aspden RM. Cyclooxygenase inhibition lowers prostaglandin E2 release from articular cartilage and reduces apoptosis but not proteoglycan degradation following an impact load in vitro. Arthritis Res. Ther. 2007, 9, R129.
Kong D, Zheng T, Zhang M, Wang D, Du S, Li X, Fang J, Cao X. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS ONE 2013, 8, e69403.
Koskinen A, Vuolteenaho K, Moilanen T, Moilanen E. Resistin as a factor in osteoarthritis: synovial fluid resistin concentrations correlate positively with interleukin 6 and matrix metalloproteinases MMP-1 and MMP-3. Scand J Rheumatol 2014;43:249–253
Lee JH, Ort T, Ma K, Picha K, Carton J, Marsters PA, Lohmander LS, Baribaud F, Song XY, Blake S. Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro. Osteoarthr Cartil. 2009, 17, 613–620.
Lee MS, Sun MT, Pang ST, Ueng SW, Chen SC, HwangTL, Wang TH. Evaluation of differentially expressed genes by shear stress in human osteoarthritic chondrocytes in vitro. Chang. Gung Med. J. 2009, 32, 42–50.
Lee SW, Rho JH, Lee SY, Kim JH, Cheong JH, Kim HY, Jeong NY, Chung WT, Yoo YH. Leptin protects rat articular chondrocytes from cytotoxicity induced by TNF-_ in the presence of cyclohexamide. Osteoarthr. Cartil. 2015, 23, 2269–2278.
Lories RJ, Daans M, Derese I, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis and Rheumatism 2006;54:1736–46.
Martel-Pelletier J, Raynauld JP, Dorais M, Abram F, Pelletier JP. The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: A post hoc analysis. Rheumatology 2016, 55, 680–688.
Otero M, Lago R, Gomez R, Dieguez C, Lago F, Gómez-Reino J, Gualillo O. Towards a pro-inflammatory and immunomodulatory emerging role of leptin. Rheumatology (Oxford) 45 (2006) 944–950.
Ramakrishnan P, Hecht BA, Pedersen, DR, Lavery MR, Maynard J, Buckwalter, JA, Martin JA. Oxidant conditioning protects cartilage from mechanically induced damage. J. Orthop. Res. 2010, 28, 914–920.
Relic B, Zeddou M, Desoroux A, Beguin Y, de Seny D, Malaise MG. Genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts. Lab. Investig. 2009, 89, 811–822.
Roos EM, Dahlberg L. 2005. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: A four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514.
Roszer T, Jozsa T, Kiss-Toth E.D, de Clerck N, Balogh L. Leptin receptor deficient diabetic (db/db) mice are compromised in postnatal bone regeneration. Cell Tissue Res. 2014, 356, 195–206.
Sharma L, Chang A. 2007. Overweight: Advancing our understanding of its impact on the knee and the hip. Ann Rheum Dis 66:141–142.
Smith, R.L.; Carter, D.R.; Schurman, D.J. Pressure and shear differentially alter human articular chondrocyte metabolism: A review. Clin. Orthop. Relat. Res. 2004, 427, S89–S95.
Song YZ, Guan J, Wang HJ, Ma W, Li F, Xu F, Ding LB, Xie L, Liu B, Liu K. Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: Cartilage damage, clinical, and radiological links. J. Clin. Lab. Anal. 2016, 30, 437–443.
Sun K, Liu F, Wang J, Guo Z, Ji Z, Yao M. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell. Dev. Biol. Anim. 2017. 53, 141-48
Tardif G, Hum D, Pelletier JP, Boileau C, Ranger P, Martel-Pelletier J. Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chon chondrocytes and synovial fibroblasts. Arthritis and Rheumatism 2004;50:2521–30.
Tardif G, Pelletier JP, Boileau C, Martel-Pelletier J. The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study. Osteoarthritis and Cartilage 2009;17:263–70.
van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis and Cartilage 1998;6:306–17.
Vuolteenaho K, Koskinen A, Moilanen T, Moilanen E. 2012. Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: A link between obesity and osteoarthritis. Ann Rheum Dis 71:1912–1913.
Wang Y, Xu Z, Wang J, Xu S. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol. Biosyst. 2016, 12, 721–728.
Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2, is an essential catabolic regulator of osteoarthritis. Ann. Rheum. Dis. 2015, 74, 595–602.
Yeh CC, Chang SF, Huang TY, Chang HI, Kuo HC, Wu YC, Hsieh CH, Shi CS, Chen CN. 2013. Shear stress modulates macrophage-induced urokinase plasminogen activator expression in human chondrocytes. Arthritis Res Ther 15:R53.
Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van Osch G, Middeldorp S, Huizinga TW, Kloppenburg M. 2010. Association between weight or body mass index and hand osteoarthritis: A systematic review. Ann Rheum Dis 69:761–765.
Zhang M, Zhang J, Lu L, Qiu ZY, Zhang X, Yu SB, Wu YP, Wang MQ. Enhancement of chondrocyte autophagy is an early response in the degenerative cartilage of the temporomandibular joint to biomechanical dental stimulation. Apoptosis 2013, 18, 423–434.
Zhang Z, Xing X, Hensley G, Chang LW, Liao W, Abu-Amer Y. Resistin induces expression of proinflammatory cytokines and chemokines in human articular chondrocytes via transcription and messenger RNA stabilization. Arthritis Rheum 2010;62: 1993–2003
(for Chapter 2)
1. Otsuki S, Hanson SR, Miyaki S, Grogan SP, Kinoshita M, Asahara H, et al. Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc Natl Acad Sci U S A. 2010; 107:10202–7. doi: 10.1073/pnas.0913897107 PMID: 20479257
2. van der Kraan PM, Blaney Davidson EN, van den Berg WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing's? Osteoarthritis Cartilage. 2010; 18:735–41. doi: 10.1016/j.joca.2010.03.001 PMID: 20211748
3. Blaney Davidson EN, Vitters EL, van Lent PL, van de Loo FA, van den Berg WB, van der Kraan PM. Elevated excellular martrix production and degradation upon bone morphogenetic proteins-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res Ther. 2007; 9: R102. PMID: 17922907
4. Davidson EN, Vitters EL, Bennink MB, van Lent PL, van Caam AP, Blom AB, et al. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann Rheum Dis. 2015; 74:1257–64. doi: 10.1136/annrheumdis-2013-204528 PMID: 24448347
5. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage. 1998; 6:306–17. PMID: 10197165
6. Nakase T, Miyaji T, Tomita T, Kaneko M, Kuriyama K, Myoui A, et al. Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartilage. 2003; 11:278–84. PMID: 12681954
7. Blaney Davidson EN, Vitters EL, van Beuningen HM, van de Loo FA, van den Berg WB, van der Kraan PM. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor betainducedosteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum. 2007; 56:4065–73. PMID: 18050218
8. Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van Osch G, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010; 69:761–5. doi: 10.1136/ard.2008.106930 PMID: 19487215
9. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334:292–5. PMID: 8532024
10. Vuolteenaho K, Koskinen A, Moilanen T, Moilanen E. Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: a link between obesity and osteoarthritis. Ann Rheum Dis. 2012; 71:1912–3. doi: 10.1136/annrheumdis-2011-201242 PMID:22689314
11. Coppari R, Bjørbæk C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov. 2012; 11:692–708. doi: 10.1038/nrd3757 PMID: 22935803
12. Gualillo O. Further evidence for leptin involvement in cartilage homeostasis. Osteoarthritis Cartilage. 2007; 15:857–60. PMID: 17560812
13. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11:85–97. doi: 10.1038/nri2921 PMID: 21252989
14. Scotece M, Conde J, Vuolteenaho K, Koskinen A, López V, Gómez-Reino J, et al. Adipokines as drug targets in joint and bone disease. Drug Discov Today. 2014; 19:241–58. doi: 10.1016/j.drudis.2013.07.012 PMID: 23906693
15. Yang R, Barouch LA. Leptin signaling and obesity: cardiovascular consequences. Circ Res. 2007;101:545–59. PMID: 17872473
16. Scotece M, Conde J, Lopez V, Lago F, Pino J, Gomez-Reino JJ, et al. Leptin in joint and bone diseases: new insights. Curr Med Chem. 2013; 20:3416–25. PMID: 23746275
17. Ku JH, Lee CK, Joo BS, An BM, Choi SH, Wang TH, et al. Correlation of synovial fluid leptin concentrations with the severity of osteoarthritis. Clin Rheumatol. 2009; 28:1431–5. doi: 10.1007/s10067-009-1242-8 PMID: 19662330
18. Griffin TM, Huebner JL, Kraus VB, Guilak F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 2009; 60:2935–44. doi: 10.1002/art.24854 PMID:19790050
19. Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC, et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A. 2012; 109:1967–72. doi: 10.1073/pnas.1121214109 PMID: 22308472
20. Zhou B, Margariti A, Zeng L, Xu Q. Cardiovasc Res. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. 2011; 90:413–20. doi: 10.1093/cvr/cvr003 PMID: 21233251
21. Leah E. Osteoarthritis: chondroprotection by histone deacetylase inhibition. Nat Rev Rheumatol. 2013; 9:321.
22. Chen WP, Bao JP, Hu PF, Feng J, Wu LD. Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep. 2010; 37:3967–72. doi: 10.1007/s11033-010-0055-9 PMID: 20237852
23. Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument AP, et al. Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum. 2013; 65:1822–30. doi: 10.1002/art.37965 PMID: 23575963
24. Im GI, Choi YJ. Epigenetics in osteoarthritis and its implication for future therapeutics. Expert Opin Biol Ther. 2013; 13:713–21. doi: 10.1517/14712598.2013.764410 PMID: 23410522
25. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986; 29:1039–49. PMID: 3741515
26. Yeh CC, Chang HI, Chiang JK, Tsai WT, Chen LM, Wu CP, et al. Regulation of plasminogen activator inhibitor 1 expression in human osteoarthritic chondrocytes by fluid shear stress: role of protein kinase Calpha. Arthritis Rheum. 2009; 60:2350–61. doi: 10.1002/art.24680 PMID: 19644850
27. Miljkovic ND, Cooper GM, Marra KG. Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage. 2008; 16:1121–30. doi: 10.1016/j.joca.2008.03.003 PMID:18406633
28. Hayashi M, Muneta T, Ju YJ, Mochizuki T, Sekiya I. Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther. 2008; 10:R118. doi: 10.1186/ar2521 PMID: 18826579
29. Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. Int Orthop. 2007; 31:773–781. PMID: 17687553
30. Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am. 2003; 85-A Suppl 3:59–66. PMID: 12925611
31. Dell'Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O'Dowd J, et al. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther. 2006; 8:R139. PMID: 16893455
32. Hui W, Litherland GJ, Elias MS, Kitson GI, Cawston TE, Rowan AD, et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis. 2012; 71:455–62. doi: 10.1136/annrheumdis-2011-200372 PMID:22072016
33. Ben-Eliezer M, Phillip M, Gat-Yablonski G. Leptin regulates chondrogenic differentiation in ATDC5 cellline through JAK/STAT and MAPK pathways. Endocrine. 2007; 32:235–44. PMID: 18080100
34. Ohba S, Lanigan TM, Roessler BJ. Leptin receptor JAK2/STAT3 signaling modulates expression of Frizzled receptors in articular chondrocytes. Osteoarthritis Cartilage. 2010; 18:1620–9. doi: 10.1016/j.joca.2010.09.006 PMID: 20868760
35. Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995; 82:241–50. PMID: 7543024
36. Sakaguchi M, Oka M, Iwasaki T, Fukami Y, Nishigori C. Role and regulation of STAT3 phosphorylation at Ser727 in melanocytes and melanoma cells. J Invest Dermatol. 2012; 132:1877–85. doi: 10.1038/jid.2012.45 PMID: 22418867
37. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009; 1171:59–76. doi: 10.1111/j.1749-6632.2009.04911.x PMID: 19723038
38. Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000; 19:2628–37. PMID:10851062
39. Zhou Z, Neupane M, Zhou HR, Wu D, Chang CC, Moustaid-Moussa N, et al. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells. Nutr Metab (Lond). 2012; 9:109.
40. Gupta M, Han JJ, Stenson M, Wellik L, Witzig TE. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy. Leukemia. 2012; 26:1356–64. doi: 10.1038/leu.2011.340 PMID: 22116549
41. Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D, et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia. 2014; 28:680–9. doi: 10.1038/leu.2013.231PMID: 23913134
42. Togi S, Kamitani S, Kawakami S, Ikeda O, Muromoto R, Nanbo A, et al. HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochem Biophys Res Commun. 2009; 379:616–20. doi: 10.1016/j.bbrc.2008.12.132 PMID: 19121623
43. Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog. 2012; 51:174–84. doi: 10.1002/mc.20777 PMID: 21520296
44. Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2013; 41:261–70. doi: 10.1016/j.exphem.2012.10.012 PMID: 23111066
Babaei A, Zarkesh-Esfahani SH, Bahrami E, Ross RJ. Restricted leptin antagonism as a therapeutic approach to treatment of autoimmune diseases. Hormones (Athens). 2011; 10:16–26.
(for Chapter 3)

1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M. 1986. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049.
2. Berk BC, Abe JI, Min W, Surapisitchat J, Yan C. 2001. Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 947:93–109.
3. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. 2005. Resistin, an adipokine with potent proinflammatory properties. J Immunol 174:5789–5795.
4. Brandauer J, Andersen MA, Kellezi H, Risis S, Frøsig C, Vienberg SG, Treebak JT. 2015. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol 6:85.
5. Chang SF, Hsieh RZ, Huang KC, Chang CA, Chiu FY, Kuo HC, Chen CN, Su YP. 2015. Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen II expression in leptin-stimulated human chondrocytes. PLoS ONE 10:e0144252.
6. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295.
7. Daghestani HN, Kraus VB. 2015. Inflammatory biomarkers in osteoarthritis. Osteoarthritis Cartilage 23:1890–1896.
8. Dvir-Ginzberg M, Steinmeyer J. 2013. Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–355.
9. Fisslthaler B, Fleming I. 2009. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105:114–127.
10. Gabay O, Hall DJ, Berenbaum F, Henrotin Y, Sanchez C. 2008. Osteoarthritis and obesity: Experimental models. Joint Bone Spine 75:675–679.
11. Gabay O, Oppenhiemer H, Meir H, Zaal K, Sanchez C, Dvir-Ginzberg M. 2012. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis 71:613–616.
12. Gabay O, Sanchez C, Dvir-Ginzberg M, Gagarina V, Zaal KJ, Song Y, He XH, McBurney MW. 2013. Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum 65:159–166.
13. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. 2015. Osteoarthritis. Lancet 386:376–387.
14. Goldring MB, Berenbaum F. 2015. Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 22:51–63.
15. Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. 2008. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 67:iii75–iii82.
16. Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F. 2012. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise. Arthritis Rheum 64:443–453.
17. Guan PP, Guo JW, Yu X, Wang Y, Wang T, Konstantopoulos K, Wang ZY, Wang P. 2015. The role of cyclooxygenase-2, interleukin-1b and fibroblast growth factor-2 in the activation of matrix metalloproteinase-1 in sheared-chondrocytes and articular cartilage. Sci Rep 5:10412.
18. Kluzek S, Arden NK, Newton J. 2015. Adipokines as potential prognostic biomarkers in patients with acute knee injury. Biomarkers 20:519–525.
19. Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, Wasserman DH. 2009. Skeletal muscle AMP-activated protein kinase is essential forthe metabolic response to exercise in vivo. J Biol Chem 284:23925–23934.
20. Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R, Kurosaka M. 2014. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis 73:1397–1404.
21. Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S, Matsuzaki T, Nishida K, Kurosaka M, Kuroda R. 2013. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1b inhuman chondrocytes. J Orthop Res 31:531–537.
22. Petrella RJ. 2000. Is exercise effective treatment for osteoarthritis of the knee? Br J Sports Med 34:326–331.
23. Petursson F, Husa M, June R, Lotz M, Terkeltaub R, Liu-Bryan R. 2013. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolicresponses to biomechanical injury in chondrocytes. Arthritis Res Ther 15:R77.
24. Robling AG, Burr DB, Turner CH. 2000. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res 15:1596–1602.
25. Roos EM, Dahlberg L. 2005. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: A four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514.
26. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. 2010. AMPK and SIRT1: A long-standing partnership? Am J Physiol Endocrinol Metab 298:E751–E760.
27. Senolt L, Housa D, Vernerova Z, Jirasek T, Svobodova R, Veigl D, Anderlova K, Muller-Ladner U, Pavelka K, Haluzik M. 2007. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann Rheum Dis 66:458–463.
28. Sharma L, Chang A. 2007. Overweight: Advancing our understanding of its impact on the knee and the hip. Ann Rheum Dis 66:141–142.
29. Song YZ, Guan J, Wang HJ, Ma W, Li F, Xu F, Ding LB, Xie L, Liu B, Liu K, Lv Z. 2015. Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: Cartilage damage, clinical, and radiological links. J Clin Lab Anal 30:437–443.
30. Suh JK, Baek GH, Arøen A, Malin CM, Niyibizi C, Evans CH, Westerhausen-Larson A. 1999. Intermittent sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism. Osteoarthritis Cartilage 7:71–80.
31. Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. 2011. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatorycytokines interleukin-1b and tumor necrosis factor a. Arthritis Rheum 63:1928–1937.
32. Tilg H, Moschen AR. 2006. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity.Nat. Rev. Immunol 6:772–783.
33. Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE. 2016. Sirtuins link inflammation and metabolism. J Immunol Res 2016:8167273.
34. Vuolteenaho K, Koskinen A, Moilanen T, Moilanen E. 2012. Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: A link between obesity and osteoarthritis. Ann Rheum Dis 71:1912–1913.
35. Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu-Bryan R. 2015. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor g coactivator 1a. Arthritis Rheumatol 67:2141–2153.
36. Wang P, Zhu F, Lee NH, Konstantopoulos K. 2010. Shear-induced interleukin-6 synthesis in chondrocytes: Roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem 285:24793–24804.
37. Yeh CC, Chang HI, Chiang JK, Tsai WT, Chen LM, WuCP, Chien S, Chen CN. 2009. Regulation of plasminogen activator inhibitor 1 expression in human osteoarthritic chondrocytes by fluid shear stress: Role of protein kinase Calpha. Arthritis Rheum 60:2350–2361.
38. Yeh CC, Chang SF, Huang TY, Chang HI, Kuo HC, Wu YC, Hsieh CH, Shi CS, Chen CN. 2013. Shear stress modulates macrophage-induced urokinase plasminogen activator expression in human chondrocytes. Arthritis Res Ther 15:R53.
39. Yokota H, Goldring MB, Sun HB. 2003. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem 278:47275–47280.
40. Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van Osch G, Middeldorp S, Huizinga TW, Kloppenburg M. 2010. Association between weight or body mass index and hand osteoarthritis: A systematic review. Ann Rheum Dis 69:761–765.
41. Zhang Z, Zhang Z, Kang Y, Hou C, Duan X, Sheng P, Sandell LJ, Liao W. 2014. Resistin stimulates expression of chemokine genes in chondrocytes via combinatorial regulation of C/EBPb and NF-kB. Int J Mol Sci 15:17242–17255.
42. Zheng S, Xu J, Xu S, Zhang M, Huang S, He F, Yang X, Xiao H, Zhang H, Ding C. 2016. Zhang Z, Zhang Z, Kang Y, Hou C, Duan X, Sheng P, Sandell LJ, Liao W. 2014. Resistin stimulates expression of chemokine genes in chondrocytes via combinatorial regulation of C/EBPb and NF-kB. Int J Mol Sci 15:17242–17255.
43. Zheng S, Xu J, Xu S, Zhang M, Huang S, He F, Yang X, Xiao H, Zhang H, Ding C. 2016. Association between circulating adipokines, radiographic changes, and knee cartilage volume in patients with knee osteoarthritis. Scand J Rheumatol 45:224–229.
44. Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K. 2010. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS ONE 5:e15174.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊