(3.236.175.108) 您好!臺灣時間:2021/02/27 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉軒妙
研究生(外文):Hsuan-Miao Liu
論文名稱:法尼醇X受體激動劑GW4064調節第四型類鐸受體和腸道微生物菌叢改善脂多醣誘發小鼠肝臟以及腸道損傷之研究
論文名稱(外文):Farnesoid X receptor agonist GW4064 ameliorates lipopolysaccharide-induced liver and intestine injury through regulating Toll-like receptor 4 signaling and gut microbiota dysbiosis in mice
指導教授:廖志飛廖志飛引用關係
指導教授(外文):Jyh-Fei Liao
學位類別:博士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:159
中文關鍵詞:法尼醇X受體GW4064微生物菌叢第四型類鐸受體肝臟腸道
外文關鍵詞:Farnesoid X receptorGW4064gut microbiotaToll-like receptor 4liverintestine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝臟和腸道損傷活化第四型類鐸受體介導細胞內發炎反應誘導肝臟疾病及發炎性腸道疾病的進程,並伴隨著腸道微生物菌叢生態的失衡。已知法尼醇X受體在肝臟疾病中負責調節能量新陳代謝與發炎反應,近年來許多研究指出法尼醇X受體在腸道發炎反應中參與改善腸道屏壁功能並調節腸道微生物菌叢生態,但是其參與之機制仍不清楚。本研究的目的是探討法尼醇X受體在肝臟和腸道損傷中調節發炎反應以及腸道微生物菌叢的機制。本研究使用C57BL/6正常小鼠及法尼醇X受體缺陷小鼠,經腹腔注射脂多醣(5 mg/kg),12小時後腹腔注射法尼醇X受體激動劑GW4064 (20 mg/kg)兩次。研究結果顯示,相較於正常小鼠,脂多醣處理後顯著增加血清丙氨酸轉氨酶含量、肝臟及腸道細胞中促發炎因子(包括腫瘤壞死因子-α、白介素1β和白介素6)的基因表現。此外,脂多醣誘發小鼠肝臟及腸道的第四型類鐸受體、p38 絲裂原激活蛋白激酶和核因子活化B細胞κ輕鏈增強子蛋白質以及凋亡誘導因子(B細胞淋巴瘤2相關X蛋白和半胱氨酸蛋白酶3)的基因表現。GW4064在正常小鼠肝臟及腸道顯著降低脂多醣促進第四型類鐸受體訊號路徑、細胞發炎反應以及凋亡現象,但是GW4064對於法尼醇X受體缺陷小鼠並無顯著的改善效果。進一步觀察腸道屏障蛋白表現(包括緊密連接蛋白-1和閉鎖小帶蛋白-1),結果顯示GW4064顯著改善脂多醣導致正常小鼠腸道緊密連接蛋白-1和閉鎖小帶蛋白-1減少的表現量,但是對於法尼醇X受體缺陷小鼠則無顯著的改善效果。有趣的是,GW4064在脂多醣處理的正常小鼠腸道中顯著改善了腸道菌叢的多樣性和組成,並且顯著降低由於脂多醣導致變形桿菌、γ變形菌、多形擬桿菌的增加。然而,GW4064對於脂多醣處理的法尼醇X受體缺陷小鼠腸道菌叢則無顯著的影響。總體而言,GW4064治療可藉由抑制脂多醣誘發的第四型類鐸受體訊號路徑抑制肝臟和腸道的發炎反應,並且改善腸道屏障以及調節腸道微生物菌叢生態,因此也許可作為治療肝炎以及大腸炎之嶄新策略。
Liver disease and inflammatory bowel disease (IBD) caused by toll-like receptor (TLR) 4-mediated intracellular inflammatory response, while following gut microbial dysbiosis. It is known that farnesoid X receptors (FXR) plays a central role in the regulation of energy metabolism and inflammatory response in liver disease. Recent studies indicated that FXR activation prevents gut barrier dysfunction and shapes the gut microbiota; however, the underlying mechanisms for theses improved phenotypes are not fully understood. The aim of this study was to investigate the action mechanisms of FXR in the regulation of inflammatory responses and gut microbial flora in liver and intestinal injury. In this study, male C57BL/6J wild-type (WT) mice and FXR knock (KO) mice were intraperitoneally (i.p.) injected with a single dose of lipopolysaccharide (LPS, 5 mg/kg), and 12 hours after LPS injection, mice were treated with FXR agonist GW4064 twice (20 mg/kg i.p.). The results showed that GW4064 alleviated LPS-induced increases in serum aspartate aminotransferase content and the mRNA expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β and -6 in WT mice. In addition, TLR4, p38 mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein levels, B-cell lymphoma-2-associated X protein (BAX) and caspase 3 mRNA expression were decreased in WT mice receiving LPS with simultaneous GW4064 administration compared with those receiving LPS alone, while these changes were not observed in FXR KO mice. Furthermore, GW4064 improved LPS-induced decrease in the protein level of intestine epithelial tight junctional claudin-1 and zonula occludens-1 (ZO-1) in WT mice, but not in FXR KO mice. Interesting, GW4064 improved LPS-induced relative abundance of Proteobacteria, Gammaproteobacteria, Bacteroides thetaiotaomicron and altered intestinal microbial diversity and composition in the LPS-challenged WT mice, but not in FXR KO mice. In conclusion, GW4064 improved LPS-induced gut microbiota dysbiosis, tight junction disruption and TLR4 signaling-mediated inflammatory responses in WT mice. Therefore, GW4064 may become a new strategy therapy for liver disease and colitis.
目錄
誌謝…………………………………………………i
中文摘要…………………………………………………iii
英文摘要…………………………………………………v
中英文對照以及縮寫表…………………………………………………vii
目錄…………………………………………………xix
圖目錄…………………………………………………xxiv
表目錄…………………………………………………xxvi
附圖目錄…………………………………………………xxvii
第一章 緒論…………………………………………………1
1.1. 肝臟損傷…………………………………………………1
1.1.1. 肝臟疾病與第四型類鐸受體訊號傳遞路徑…………………………………………1
1.1.2. 非酒精脂肪肝疾病(non-alcoholic fatty liver diseases,NAFLD)…………………………………………………2
1.1.3. 酒精脂肪肝炎(Alcoholic steatohepatitis)………………………4
1.1.4. 自身免疫性肝病…………………………………………………4
1.1.5. 肝纖維化…………………………………………………5
1.1.6. 肝硬化…………………………………………………6
1.1.7. 脂多醣在肝臟致病機轉…………………………………………………6
1.2. 法尼醇X受體在肝臟的角色…………………………………………………7
1.3. FXR扮演的角色…………………………………………………11
1.4. 發炎性腸道疾病(Inflammatory bowel disease,IBD)………17
1.4.1. 克隆氏症…………………………………………………18
1.4.2. 潰瘍性結腸炎…………………………………………………21
1.4.3. 發炎性腸道疾病與TLR4相關訊號傳遞路徑…………………25
1.5. 腸道微生物菌叢與疾病相關性…………………………………………………27
1.5.1. 腸內微生物菌叢依據生物分類法分類………………………………………………… 28
1.5.2. 腸道微生物菌叢與發炎性腸道疾病…………………………………………………36
1.6. 脂多醣與發炎性腸道疾病…………………………………………………37
第二章 研究動機與目的…………………………………………………39
第三章 實驗材料與方法…………………………………………………40
3.1. 實驗設計…………………………………………………40
3.1.1. 實驗使用小鼠…………………………………………………40
3.2. 實驗分析流程…………………………………………………42
3.2.1. 組織學…………………………………………………42
3.2.1.1. 石蠟切片…………………………………………………42
3.2.1.2. 蘇木紫-伊紅染色…………………………………………………42
3.2.1.3. 免疫組織化學染色…………………………………………………43
3.2.2. 丙氨酸轉氨酶(alanine transaminase,ALT)濃度測定…………44
3.2.3. 總膽汁酸 (total bile acid,TBA)濃度測定…………44
3.2.4. 萃取組織的RNA以及合成cDNA…………45
3.2.5. 即時定量聚合酶鏈式反應(quantitative polymerase chain reaction, qPCR)…………46
3.2.6. 萃取組織的細胞核和細胞質內蛋白質…………46
3.2.7. 西方墨點法(western blot,WB)…………46
3.2.8. 從糞便樣本中萃取DNA…………48
3.2.9. 16S rRNA基因擴增和系統演化分析…………49
3.2.10. 腸道微生物菌叢主成分分析(principal components analysis,PCA)…………50
3.2.11. 統計方法…………50
第四章 實驗結果…………51
4.1. GW4064減緩脂多醣誘發血清ALT增加以及肝臟損傷…………51
4.2. GW4064在肝損傷小鼠提升肝臟內FXR蛋白質以及其下游SHP基因表現…………52
4.3. GW4064抑制脂多醣誘發肝臟損傷小鼠肝臟內TLR4訊號傳遞路徑…52
4.4. GW4064抑制脂多醣誘發肝臟損傷小鼠肝臟細胞凋亡…………53
4.5. GW4064提升迴腸炎小鼠迴腸內FXR蛋白質以及其下游SHP mRNA表現 …………54
4.6. GW4064改善脂多醣導致迴腸炎小鼠迴腸組織損傷和緊密連結蛋白損壞…………55
4.7. GW4064改善脂多醣誘發大腸炎小鼠大腸組織損傷以及FXR蛋白質表現量…………56
4.8. GW4064改善脂多醣誘發大腸炎小鼠腸道微生物菌叢多樣性之改變 …………57
4.9. GW4064對於脂多醣處理的正常和FXR缺陷小鼠腸道微生物菌叢的影響…………58
4.10. GW4064調節脂多醣誘發大腸炎小鼠腸道微生物菌叢組成比例……59
4.11. GW4064調節脂多醣誘發大腸炎小鼠血清和大腸總膽汁酸濃度……62
4.12. GW4064調節脂多醣誘發大腸炎小鼠大腸膽汁酸運輸因子表現……62
4.13. GW4064減緩迴腸炎小鼠迴腸巨噬細胞浸潤 ……65
4.14. GW4064減緩脂多醣導致迴腸炎小鼠迴腸TLR4和MyD88蛋白質表現 ……65
4.15. GW4064減緩脂多醣誘發大腸炎小鼠大腸TLR4訊號傳遞路徑……65
4.16. GW4064改善脂多醣誘發迴腸炎小鼠迴腸發炎反應以及細胞凋亡表現……66
4.17. GW4064減緩脂多醣誘發大腸炎小鼠大腸發炎反應、內質網壓力以及細胞凋亡表現……67
4.18. GW4064改善脂多醣誘發大腸炎小鼠大腸細胞凋亡表現……68
4.19. GW4064改善脂多醣誘發迴腸炎小鼠迴腸粒線體損傷……69
4.20. GW4064減緩脂多醣誘發大腸炎小鼠大腸促癌因子β-catenin和C-Myc蛋白質表現……70
4.21. GW4064改善脂多醣誘發大腸炎小鼠大腸血管新生……70
第五章 討論……72
參考文獻 ……83
實驗結果圖……107
表……142
附圖……146


圖目錄
圖一、GW4064減緩脂多醣誘發小鼠肝臟損傷和發炎反應………………………..107
圖二、GW4064降低脂多醣誘發肝臟損傷小鼠肝臟內發炎反應…………………108
圖三、GW4064提升脂多醣誘發肝臟損傷小鼠肝臟FXR以及其下游SHP表現 .109
圖四、GW4064減緩脂多醣誘發肝臟損傷小鼠肝臟內TLR4/MyD88/p38 MAPK/NF-κB信號路徑………………………………………………………...110
圖五、GW4064減緩脂多醣誘發肝臟損傷小鼠肝臟內細胞凋亡路徑之活化…… 112
圖六、GW4064提升脂多醣誘發迴腸炎小鼠迴腸FXR以及SHP表現之減少…. 113
圖七、GW4064改善脂多醣誘發迴腸炎小鼠迴腸組織和緊密連結蛋白損傷…… 115
圖八、GW4064改善脂多醣誘發大腸炎小鼠大腸損傷以及FXR蛋白質表現….. 116
圖九、GW4064改善脂多醣誘發大腸炎小鼠腸道屏障受損……………………… 117
圖十、GW4064影響腸道微生物菌叢多樣性……………………………………… 118
圖十一、GW4064對於脂多醣處理的正常和FXR缺陷小鼠腸道微生物菌叢的影響 …………………………………………………………………………………...119
圖十二、GW4064影響腸道微生物菌叢門類階段組成分布……………………… 121
圖十三、GW4064影響腸道微生物菌叢綱類階段組成分布……………………… 122
圖十四、GW4064影響腸道微生物菌叢目類階段組成分布……………………… 123
圖十五、GW4064影響腸道微生物菌叢種類階段組成分布……………………… 124
圖十六、GW4064調節腸道膽汁酸動態平衡和膽汁酸運輸因子mRNA表現….. 127
圖十七、GW4064調節膽汁酸運輸因子蛋白質表現……………………………… 129
圖十八、GW4064減緩脂多醣誘發迴腸炎小鼠迴腸巨噬細胞浸潤……………… 130
圖十九、GW4064減緩脂多醣誘發迴腸炎小鼠迴腸TLR4和MyD88蛋白質表現 …………………………………………………………………………………...132
圖二十、GW4064減緩脂多醣誘發大腸炎小鼠大腸TLR4訊號傳遞路徑……… 133
圖二十一、GW4064改善脂多醣誘發迴腸炎小鼠迴腸發炎反應以及細胞凋亡表現 …………………………………………………………………………………...135
圖二十二、GW4064減緩脂多醣誘發大腸炎小鼠大腸發炎反應、內質網壓力以及細胞凋亡 …………………………………………………………………………...136
圖二十三、GW4064減緩脂多醣誘發大腸炎小鼠大腸細胞凋亡因子Caspase 3蛋白質表現 …………………………………………………………………………...137
圖二十四、GW4064改善脂多醣誘發迴腸炎小鼠迴腸粒線體損傷 ………………......................................................................................................138
圖二十五、GW4064減緩脂多醣誘發大腸炎小鼠大腸促癌因子β-catenin和C-Myc蛋白質表現……………………………………………………………………... 139
圖二十六、GW4064減緩脂多醣誘發大腸炎小鼠大腸血管新生相關蛋白質表現 141
1. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010; 376: 190-201.
2. Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 2010; 3: 21.
3. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004; 4: 499-511.
4. Ding N, Zhang Y, Loughran PA, Wang Q, Tsung A, Billiar TR. TIFA upregulation after hypoxia-reoxygenation is TLR4- and MyD88-dependent and associated with HMGB1 upregulation and release. Free Radic Biol Med. 2013; 63: 361-7.
5. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology. 2009; 55: 379-86.
6. Budick-Harmelin N, Dudas J, Demuth J, Madar Z, Ramadori G, Tirosh O. Triglycerides potentiate the inflammatory response in rat Kupffer cells. Antioxid Redox Signal. 2008; 10: 2009-22.
7. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology. 2009; 50: 1094-104.
8. Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008; 138: 1452-5.
9. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006; 116: 3015-25.
10. Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol. 2009; 50: 1258-66.
11. Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol. 2010; 16: 1321-9.
12. Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol. 2004; 287: G310-4.
13. Wang AP, Migita K, Ito M, Takii Y, Daikoku M, Yokoyama T, et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun. 2005; 25: 85-91.
14. Karrar A, Broome U, Sodergren T, Jaksch M, Bergquist A, Bjornstedt M, et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology. 2007; 132: 1504-14.
15. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med. 1993; 328: 1828-35.
16. Friedman SL. Hepatic fibrosis -- overview. Toxicology. 2008; 254: 120-9.
17. Holt AP, Salmon M, Buckley CD, Adams DH. Immune interactions in hepatic fibrosis. Clin Liver Dis. 2008; 12: 861-82.
18. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007; 13: 1324-32.
19. Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology. 2009; 49: 960-8.
20. Vazquez-Torres A, Vallance BA, Bergman MA, Finlay BB, Cookson BT, Jones-Carson J, et al. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol. 2004; 172: 6202-8.
21. Tazi KA, Quioc JJ, Saada V, Bezeaud A, Lebrec D, Moreau R. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J Hepatol. 2006; 45: 280-9.
22. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011; 141: 1572-85.
23. Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol. 2010; 8: 8-14.
24. Wang X, Wang C, Wang J, Zhao S, Zhang K, Wang J, et al. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-kappaB, MAPKs and Akt signaling pathways. Neuropharmacology. 2014; 79: 642-56.
25. Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014; 5: e996.
26. Nolan JP. The role of endotoxin in liver injury. Gastroenterology. 1975; 69: 1346-56.
27. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995; 81: 687-93.
28. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012; 13: 213-24.
29. Fausto N. Liver regeneration. J Hepatol. 2000; 32: 19-31.
30. Proceedings of the Public's Health and the Law in the 21st Century: Fourth Annual Partnership Conference. June 13-15, 2005. Atlanta, Georgia, USA. J Law Med Ethics. 2005; 33: 5-118.
31. Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett. 2008; 582: 10-8.
32. Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem. 2003; 278: 104-10.
33. Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2010; 8: e005.
34. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999; 284: 1362-5.
35. Zhao A, Yu J, Lew JL, Huang L, Wright SD, Cui J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004; 23: 519-26.
36. Dussault I, Beard R, Lin M, Hollister K, Chen J, Xiao JH, et al. Identification of gene-selective modulators of the bile acid receptor FXR. J Biol Chem. 2003; 278: 7027-33.
37. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem. 2000; 43: 2971-4.
38. Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006; 281: 11039-49.
39. Mencarelli A, Cipriani S, Renga B, D'Amore C, Palladino G, Distrutti E, et al. FXR activation improves myocardial fatty acid metabolism in a rodent model of obesity-driven cardiotoxicity. Nutr Metab Cardiovasc Dis. 2013; 23: 94-101.
40. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006; 103: 3920-5.
41. Costantino G, Macchiarulo A, Entrena-Guadix A, Camaioni E, Pellicciari R. Binding mode of 6ECDCA, a potent bile acid agonist of the farnesoid X receptor (FXR). Bioorg Med Chem Lett. 2003; 13: 1865-8.
42. Pellicciari R, Costantino G, Camaioni E, Sadeghpour BM, Entrena A, Willson TM, et al. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J Med Chem. 2004; 47: 4559-69.
43. Ahmad Z, Subramanyam L, Szczepaniak L, Simha V, Adams-Huet B, Garg A. Cholic acid for hepatic steatosis in patients with lipodystrophy: a randomized, controlled trial. Eur J Endocrinol. 2013; 168: 771-8.
44. Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R, Schramm C, et al. A Randomized Trial of Obeticholic Acid Monotherapy in Patients with Primary Biliary Cholangitis. Hepatology. 2017.
45. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006; 312: 233-6.
46. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007; 67: 863-7.
47. Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 2007; 28: 940-6.
48. Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D. Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer. 2006; 118: 532-9.
49. Jenkins GJ, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, et al. The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis. 2004; 25: 317-23.
50. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008; 48: 1632-43.
51. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med. 2004; 10: 1352-8.
52. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006; 103: 1006-11.
53. Rogers AB, Fox JG. Inflammation and Cancer. I. Rodent models of infectious gastrointestinal and liver cancer. Am J Physiol Gastrointest Liver Physiol. 2004; 286: G361-6.
54. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007; 317: 121-4.
55. Suh JM, Yu CT, Tang K, Tanaka T, Kodama T, Tsai MJ, et al. The expression profiles of nuclear receptors in the developing and adult kidney. Mol Endocrinol. 2006; 20: 3412-20.
56. Dawson PA. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol. 2011: 169-203.
57. Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis. 2015; 33: 327-31.
58. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, et al. Identification of a hormonal basis for gallbladder filling. Nat Med. 2006; 12: 1253-5.
59. Gadaleta RM, Oldenburg B, Willemsen EC, Spit M, Murzilli S, Salvatore L, et al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappaB signaling in the intestine. Biochim Biophys Acta. 2011; 1812: 851-8.
60. Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, et al. Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther. 2005; 313: 604-12.
61. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009; 183: 6251-61.
62. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61: 759-67.
63. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012; 5: 19-27.
64. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014; 15: 317-28.
65. De Gottardi A, Touri F, Maurer CA, Perez A, Maurhofer O, Ventre G, et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. Dig Dis Sci. 2004; 49: 982-9.
66. Torres J, Bao X, Iuga AC, Chen A, Harpaz N, Ullman T, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia. Inflamm Bowel Dis. 2013; 19: 275-82.
67. Modica S, Murzilli S, Salvatore L, Schmidt DR, Moschetta A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res. 2008; 68: 9589-94.
68. Bailey AM, Zhan L, Maru D, Shureiqi I, Pickering CR, Kiriakova G, et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am J Physiol Gastrointest Liver Physiol. 2014; 306: G48-58.
69. Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer. 2012; 130: 2232-9.
70. Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem. 2001; 276: 42549-56.
71. Li J, Pircher PC, Schulman IG, Westin SK. Regulation of complement C3 expression by the bile acid receptor FXR. J Biol Chem. 2005; 280: 7427-34.
72. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001; 276: 28857-65.
73. Shibata M, Morizane T, Uchida T, Yamagami T, Onozuka Y, Nakano M, et al. Irregular regeneration of hepatocytes and risk of hepatocellular carcinoma in chronic hepatitis and cirrhosis with hepatitis-C-virus infection. Lancet. 1998; 351: 1773-7.
74. Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 2000; 275: 39313-7.
75. Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem. 2000; 275: 10638-47.
76. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest. 2002; 109: 961-71.
77. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000; 6: 517-26.
78. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2: 217-25.
79. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003; 17: 1581-91.
80. Hubbert ML, Zhang Y, Lee FY, Edwards PA. Regulation of hepatic Insig-2 by the farnesoid X receptor. Mol Endocrinol. 2007; 21: 1359-69.
81. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002; 277: 2908-15.
82. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem. 2003; 278: 41930-7.
83. Edwards PA, Kast HR, Anisfeld AM. BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res. 2002; 43: 2-12.
84. Anisfeld AM, Kast-Woelbern HR, Lee H, Zhang Y, Lee FY, Edwards PA. Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res. 2005; 46: 458-68.
85. Sirvent A, Claudel T, Martin G, Brozek J, Kosykh V, Darteil R, et al. The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett. 2004; 566: 173-7.
86. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004; 18: 157-69.
87. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004; 113: 1408-18.
88. Stayrook KR, Bramlett KS, Savkur RS, Ficorilli J, Cook T, Christe ME, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology. 2005; 146: 984-91.
89. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995; 3: 149-54.
90. Ding JW, Andersson R, Soltesz V, Willen R, Bengmark S. The role of bile and bile acids in bacterial translocation in obstructive jaundice in rats. Eur Surg Res. 1993; 25: 11-9.
91. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2017.
92. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008; 7: 678-93.
93. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003; 83: 633-71.
94. Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem. 1999; 274: 15181-5.
95. Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem. 2000; 275: 2905-10.
96. Raedsch R, Lauterburg BH, Hofmann AF. Altered bile acid metabolism in primary biliary cirrhosis. Dig Dis Sci. 1981; 26: 394-401.
97. Stiehl A, Raedsch R, Rudolph G, Gundert-Remy U, Senn M. Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients. Hepatology. 1985; 5: 492-5.
98. Hwang ST, Urizar NL, Moore DD, Henning SJ. Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology. 2002; 122: 1483-92.
99. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010; 9: 215-36.
100. Jahnel J, Fickert P, Hauer AC, Hogenauer C, Avian A, Trauner M. Inflammatory bowel disease alters intestinal bile acid transporter expression. Drug Metab Dispos. 2014; 42: 1423-31.
101. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009; 361: 2066-78.
102. Baumgart DC, Sandborn WJ. Crohn's disease. Lancet. 2012; 380: 1590-605.
103. Spehlmann ME, Begun AZ, Burghardt J, Lepage P, Raedler A, Schreiber S. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008; 14: 968-76.
104. Bengtson MB, Solberg C, Aamodt G, Sauar J, Jahnsen J, Moum B, et al. Familial aggregation in Crohn's disease and ulcerative colitis in a Norwegian population-based cohort followed for ten years. J Crohns Colitis. 2009; 3: 92-9.
105. Bengtson MB, Solberg C, Aamodt G, Jahnsen J, Moum B, Sauar J, et al. Clustering in time of familial IBD separates ulcerative colitis from Crohn's disease. Inflamm Bowel Dis. 2009; 15: 1867-74.
106. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010; 42: 1118-25.
107. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011; 43: 246-52.
108. Moussata D, Goetz M, Gloeckner A, Kerner M, Campbell B, Hoffman A, et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut. 2011; 60: 26-33.
109. Buisine MP, Desreumaux P, Debailleul V, Gambiez L, Geboes K, Ectors N, et al. Abnormalities in mucin gene expression in Crohn's disease. Inflamm Bowel Dis. 1999; 5: 24-32.
110. Soderholm JD, Olaison G, Peterson KH, Franzen LE, Lindmark T, Wiren M, et al. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut. 2002; 50: 307-13.
111. Weber CR, Raleigh DR, Su L, Shen L, Sullivan EA, Wang Y, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010; 285: 12037-46.
112. Clayburgh DR, Barrett TA, Tang Y, Meddings JB, Van Eldik LJ, Watterson DM, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest. 2005; 115: 2702-15.
113. Barreau F, Madre C, Meinzer U, Berrebi D, Dussaillant M, Merlin F, et al. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches. Gut. 2010; 59: 207-17.
114. Buhner S, Buning C, Genschel J, Kling K, Herrmann D, Dignass A, et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation? Gut. 2006; 55: 342-7.
115. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010; 11: 76-83.
116. Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci U S A. 2010; 107: 14739-44.
117. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008; 134: 743-56.
118. Kaser A, Blumberg RS. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol. 2010; 3: 11-6.
119. Baumgart DC, Metzke D, Guckelberger O, Pascher A, Grotzinger C, Przesdzing I, et al. Aberrant plasmacytoid dendritic cell distribution and function in patients with Crohn's disease and ulcerative colitis. Clin Exp Immunol. 2011; 166: 46-54.
120. Baumgart DC, Thomas S, Przesdzing I, Metzke D, Bielecki C, Lehmann SM, et al. Exaggerated inflammatory response of primary human myeloid dendritic cells to lipopolysaccharide in patients with inflammatory bowel disease. Clin Exp Immunol. 2009; 157: 423-36.
121. Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, et al. Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut. 2005; 54: 228-36.
122. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010; 16: 90-7.
123. Noguchi E, Homma Y, Kang X, Netea MG, Ma X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol. 2009; 10: 471-9.
124. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009; 361: 2033-45.
125. Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G, Lee AT, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010; 42: 777-80.
126. Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005; 19 Suppl A: 5A-36A.
127. Loftus EV, Jr., Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am. 2002; 31: 1-20.
128. Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006; 101: 993-1002.
129. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sorensen TI, Binder V. Familial occurrence of inflammatory bowel disease. N Engl J Med. 1991; 324: 84-8.
130. Monsen U, Brostrom O, Nordenvall B, Sorstad J, Hellers G. Prevalence of inflammatory bowel disease among relatives of patients with ulcerative colitis. Scand J Gastroenterol. 1987; 22: 214-8.
131. Farmer RG, Michener WM, Mortimer EA. Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol. 1980; 9: 271-7.
132. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988; 29: 990-6.
133. Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol. 2000; 35: 1075-81.
134. Birkenfeld S, Zvidi I, Hazazi R, Niv Y. The prevalence of ulcerative colitis in Israel: a twenty-year survey. J Clin Gastroenterol. 2009; 43: 743-6.
135. Lopez-Serrano P, Perez-Calle JL, Perez-Fernandez MT, Fernandez-Font JM, Boixeda de Miguel D, Fernandez-Rodriguez CM. Environmental risk factors in inflammatory bowel diseases. Investigating the hygiene hypothesis: a Spanish case-control study. Scand J Gastroenterol. 2010; 45: 1464-71.
136. Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006; 130: 1588-94.
137. Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008; 135: 781-6.
138. Andersson RE, Olaison G, Tysk C, Ekbom A. Appendectomy and protection against ulcerative colitis. N Engl J Med. 2001; 344: 808-14.
139. Koutroubakis IE, Vlachonikolis IG. Appendectomy and the development of ulcerative colitis: results of a metaanalysis of published case-control studies. Am J Gastroenterol. 2000; 95: 171-6.
140. Lewis JD, Aberra FN, Lichtenstein GR, Bilker WB, Brensinger C, Strom BL. Seasonal variation in flares of inflammatory bowel disease. Gastroenterology. 2004; 126: 665-73.
141. Tysk C, Jarnerot G. Seasonal variation in exacerbations of ulcerative colitis. Scand J Gastroenterol. 1993; 28: 95-6.
142. Motley RJ, Clements D, Evans WD, Crawley EO, Evans C, Rhodes J, et al. A four-year longitudinal study of bone loss in patients with inflammatory bowel disease. Bone Miner. 1993; 23: 95-104.
143. Van Klinken BJ, Van der Wal JW, Einerhand AW, Buller HA, Dekker J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut. 1999; 44: 387-93.
144. Rahman A, Fahlgren A, Sitohy B, Baranov V, Zirakzadeh A, Hammarstrom S, et al. Beta-defensin production by human colonic plasma cells: a new look at plasma cells in ulcerative colitis. Inflamm Bowel Dis. 2007; 13: 847-55.
145. Rahman A, Fahlgren A, Sundstedt C, Hammarstrom S, Danielsson A, Hammarstrom ML. Chronic colitis induces expression of beta-defensins in murine intestinal epithelial cells. Clin Exp Immunol. 2011; 163: 123-30.
146. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005; 129: 50-65.
147. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000; 68: 7010-7.
148. Vamadevan AS, Fukata M, Arnold ET, Thomas LS, Hsu D, Abreu MT. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun. 2010; 16: 93-103.
149. Shen X, Shi R, Zhang H, Li K, Zhao Y, Zhang R. The Toll-like receptor 4 D299G and T399I polymorphisms are associated with Crohn's disease and ulcerative colitis: a meta-analysis. Digestion. 2010; 81: 69-77.
150. Goyette P, Labbe C, Trinh TT, Xavier RJ, Rioux JD. Molecular pathogenesis of inflammatory bowel disease: genotypes, phenotypes and personalized medicine. Ann Med. 2007; 39: 177-99.
151. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007; 27: 549-59.
152. Hausmann M, Kiessling S, Mestermann S, Webb G, Spottl T, Andus T, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology. 2002; 122: 1987-2000.
153. Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med. 1985; 161: 475-89.
154. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008; 14: 4280-8.
155. Huang HY, Zhang ZJ, Cao CB, Wang N, Liu FF, Peng JQ, et al. The TLR4/NF-kappaB signaling pathway mediates the growth of colon cancer. Eur Rev Med Pharmacol Sci. 2014; 18: 3834-43.
156. Rashidian A, Muhammadnejad A, Dehpour AR, Mehr SE, Akhavan MM, Shirkoohi R, et al. Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway. Inflammopharmacology. 2016; 24: 109-18.
157. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006; 440: 233-6.
158. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006; 440: 228-32.
159. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006; 24: 317-27.
160. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011; 12: 222-30.
161. Beltran B, Nos P, Dasi F, Iborra M, Bastida G, Martinez M, et al. Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn's disease. Inflamm Bowel Dis. 2010; 16: 76-86.
162. Restivo NL, Srivastava MD, Schafer IA, Hoppel CL. Mitochondrial dysfunction in a patient with crohn disease: possible role in pathogenesis. J Pediatr Gastroenterol Nutr. 2004; 38: 534-8.
163. Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011; 32: 171-9.
164. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001; 411: 599-603.
165. Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature. 2005; 435: 584-9.
166. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010; 32: 379-91.
167. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011; 17: 1359-72.
168. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010; 207: 1045-56.
169. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005; 307: 1904-9.
170. Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012; 110: 1364-90.
171. Nazli A, Yang PC, Jury J, Howe K, Watson JL, Soderholm JD, et al. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol. 2004; 164: 947-57.
172. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E, et al. Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol. 2005; 207: 164-76.
173. Hamilton-Miller JM, Shah S, Winkler JT. Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutr. 1999; 2: 223-9.
174. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104: 13780-5.
175. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2006; 44: 4136-41.
176. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015; 37: 47-55.
177. Munyaka PM, Sepehri S, Ghia JE, Khafipour E. Carrageenan gum and adherent invasive escherichia coli in a piglet model of inflammatory bowel disease: impact on intestinal mucosa-associated microbiota. Front Microbiol. 2016; 7: 462.
178. Yang Y, Chen G, Yang Q, Ye J, Cai X, Tsering P, et al. Gut microbiota drives the attenuation of dextran sulphate sodium-induced colitis by Huangqin decoction. Oncotarget. 2017; 8: 48863-74.
179. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res. 2015; 142: 23-32.
180. Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2011; 17: 917-26.
181. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2016.
182. Shah R, Cope JL, Nagy-Szakal D, Dowd S, Versalovic J, Hollister EB, et al. Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis. Gut Microbes. 2016; 7: 384-96.
183. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio. 2014; 5.
184. Bradlow HL. Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Investig. 2014; 17: 53-61.
185. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014; 80: 5935-43.
186. Hansen CH, Holm TL, Krych L, Andresen L, Nielsen DS, Rune I, et al. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells. Eur J Immunol. 2013; 43: 447-57.
187. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013; 110: 9066-71.
188. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004; 54: 1469-76.
189. Fenner L, Roux V, Mallet MN, Raoult D. Bacteroides massiliensis sp. nov., isolated from blood culture of a newborn. Int J Syst Evol Microbiol. 2005; 55: 1335-7.
190. Shipman JA, Cho KH, Siegel HA, Salyers AA. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 1999; 181: 7206-11.
191. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015; 347: 170-5.
192. Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015; 517: 165-9.
193. Curtis MM, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe. 2014; 16: 759-69.
194. Jiang Z, Zhao M, Zhang H, Li Y, Liu M, Feng F. Antimicrobial emulsifier - glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis and systemic low-grade inflammation in low-fat diet fed mice. Mol Nutr Food Res. 2017.
195. Lin J, Negga R, Zeng X, Smith K. Effect of bile salt hydrolase inhibitors on a bile salt hydrolase from lactobacillus acidophilus. Pathogens. 2014; 3: 947-56.
196. Lin J. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers. Front Microbiol. 2014; 5: 33.
197. Guban J, Korver DR, Allison GE, Tannock GW. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poult Sci. 2006; 85: 2186-94.
198. Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe. 2010; 16: 195-200.
199. Hamad EM, Sato M, Uzu K, Yoshida T, Higashi S, Kawakami H, et al. Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr. 2009; 101: 716-24.
200. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010; 64: 636-43.
201. Kang JH, Yun SI, Park HO. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol. 2010; 48: 712-4.
202. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr. 2014; 53: 599-606.
203. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One. 2013; 8: e54617.
204. Kitahara M, Takamine F, Imamura T, Benno Y. Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. Int J Syst Evol Microbiol. 2001; 51: 39-44.
205. Kitahara M, Takamine F, Imamura T, Benno Y. Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2000; 50 Pt 3: 971-8.
206. Winter J, Morris GN, O'Rourke-Locascio S, Bokkenheuser VD, Mosbach EH, Cohen BI, et al. Mode of action of steroid desmolase and reductases synthesized by Clostridium "scindens" (formerly Clostridium strain 19). J Lipid Res. 1984; 25: 1124-31.
207. Greathouse KL, Harris CC, Bultman SJ. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab. 2015; 21: 9-10.
208. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015; 517: 205-8.
209. Berr F, Kullak-Ublick GA, Paumgartner G, Munzing W, Hylemon PB. 7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology. 1996; 111: 1611-20.
210. Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res. 2013; 54: 2437-49.
211. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006; 47: 241-59.
212. Hill MJ. The role of colon anaerobes in the metabolism of bile acids and steroids, and its relation to colon cancer. Cancer. 1975; 36: 2387-400.
213. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 2005; 589: 47-65.
214. Williams OM, Brazier J, Peraino V, Goldstein EJ. A review of three cases of Clostridium aldenense bacteremia. Anaerobe. 2010; 16: 475-7.
215. Mabrok HB, Klopfleisch R, Ghanem KZ, Clavel T, Blaut M, Loh G. Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis. 2012; 33: 203-8.
216. Ward JM, Fox JG, Anver MR, Haines DC, George CV, Collins MJ, et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J Natl Cancer Inst. 1994; 86: 1222-7.
217. Fox JG, Dewhirst FE, Shen Z, Feng Y, Taylor NS, Paster BJ, et al. Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology. 1998; 114: 755-63.
218. Garcia A, Zeng Y, Muthupalani S, Ge Z, Potter A, Mobley MW, et al. Helicobacter hepaticus--induced liver tumor promotion is associated with increased serum bile acid and a persistent microbial-induced immune response. Cancer Res. 2011; 71: 2529-40.
219. Swennes AG, Sheh A, Parry NM, Muthupalani S, Lertpiriyapong K, Garcia A, et al. Helicobacter hepaticus infection promotes hepatitis and preneoplastic foci in farnesoid X receptor (FXR) deficient mice. PLoS One. 2014; 9: e106764.
220. Maurer KJ, Ihrig MM, Rogers AB, Ng V, Bouchard G, Leonard MR, et al. Identification of cholelithogenic enterohepatic helicobacter species and their role in murine cholesterol gallstone formation. Gastroenterology. 2005; 128: 1023-33.
221. Oettle AG. Spontaneous carcinoma of the glandular stomach in Rattus (mastomys) natalensis, an African rodent. Br J Cancer. 1957; 11: 415-33.
222. Kidd M, Tang LH, Modlin IM, Zhang T, Chin K, Holt PR, et al. Gastrin-mediated alterations in gastric epithelial apoptosis and proliferation in a mastomys rodent model of gastric neoplasia. Digestion. 2000; 62: 143-51.
223. Shen Z, Xu S, Dewhirst FE, Paster BJ, Pena JA, Modlin IM, et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter. 2005; 10: 59-70.
224. Eaton KA, Opp JS, Gray BM, Bergin IL, Young VB. Ulcerative typhlocolitis associated with Helicobacter mastomyrinus in telomerase-deficient mice. Vet Pathol. 2011; 48: 713-25.
225. Burke DA, Axon AT. Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. BMJ. 1988; 297: 102-4.
226. Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009; 50: 1955-66.
227. Gerard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013; 3: 14-24.
228. Stecher B. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr. 2015; 3.
229. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994; 180: 2359-64.
230. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002; 122: 44-54.
231. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011; 17: 179-84.
232. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009; 326: 1694-7.
233. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A. 2010; 107: 7503-8.
234. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1: 4586-91.
235. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011; 332: 970-4.
236. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1: 4554-61.
237. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464: 59-65.
238. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010; 139: 1844-54 e1.
239. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011; 9: 390-403.
240. Perlmann P, Hammarstrom S, Lagercrantz R, Gustafsson BE. Antigen from colon of germfree rats and antibodies in human ulcerative colitis. Ann N Y Acad Sci. 1965; 124: 377-94.
241. Marget W, Schussler P. Letter: Lipopolysaccharides in Crohn's disease. Lancet. 1976; 2: 97.
242. Furukawa H, Sakuno T, Sakakibara Y, Takahashi T, Domae N. [Antigenic role of fetal colonic lipopolysaccharides (LPS) in ulcerative colitis]. Nihon Shokakibyo Gakkai Zasshi. 1977; 74: 284-95.
243. Aoki K. A study of endotoxemia in ulcerative colitis and Crohn's disease. I. Clinical study. Acta Med Okayama. 1978; 32: 147-58.
244. Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, et al. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A. 1991; 88: 2065-9.
245. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000; 102: 731-44.
246. Li G, Zhu Y, Tawfik O, Kong B, Williams JA, Zhan L, et al. Mechanisms of STAT3 activation in the liver of FXR knockout mice. Am J Physiol Gastrointest Liver Physiol. 2013; 305: G829-37.
247. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10: 996-8.
248. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357-9.
249. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335-6.
250. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015; 43: W566-70.
251. Yao J, Zhou CS, Ma X, Fu BQ, Tao LS, Chen M, et al. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol. 2014; 20: 14430-41.
252. Wang YD, Yang F, Chen WD, Huang X, Lai L, Forman BM, et al. Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo. Mol Endocrinol. 2008; 22: 1622-32.
253. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140: 805-20.
254. McClain CJ, Barve S, Deaciuc I, Kugelmas M, Hill D. Cytokines in alcoholic liver disease. Semin Liver Dis. 1999; 19: 205-19.
255. Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004; 16: 3-9.
256. Nagaleekar VK, Sabio G, Aktan I, Chant A, Howe IW, Thornton TM, et al. Translational control of NKT cell cytokine production by p38 MAPK. J Immunol. 2011; 186: 4140-6.
257. Allen K, Kim ND, Moon JO, Copple BL. Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling. Toxicol Appl Pharmacol. 2010; 243: 63-7.
258. Xu Z, Huang G, Gong W, Zhou P, Zhao Y, Zhang Y, et al. FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal. 2012; 24: 1658-64.
259. Nolan JP. Intestinal endotoxins as mediators of hepatic injury--an idea whose time has come again. Hepatology. 1989; 10: 887-91.
260. Zhang P, Zhang M, Wan M, Huang X, Jiang Y, Xu S, et al. Tamoxifen attenuates lipopolysaccharide/galactosamine-induced acute liver failure by antagonizing hepatic inflammation and apoptosis. Immunol Invest. 2017; 46: 284-94.
261. Lian F, Wang Y, Xiao Y, Wu X, Xu H, Liang L, et al. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis. Mol Med Rep. 2015; 12: 5821-7.
262. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5: a008656.
263. Ito S, Tanaka Y, Oshino R, Okado S, Hori M, Isobe KI. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation. Cell Death Dis. 2016; 7: e2219.
264. Attinkara R, Mwinyi J, Truninger K, Regula J, Gaj P, Rogler G, et al. Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease. BMC Res Notes. 2012; 5: 461.
265. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011; 60: 463-72.
266. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014; 146: 1489-99.
267. Merga Y, Campbell BJ, Rhodes JM. Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy. Dig Dis. 2014; 32: 475-83.
268. Liu HM, Liao JF, Lee TY. Farnesoid X receptor agonist GW4064 ameliorates lipopolysaccharide-induced ileocolitis through TLR4/MyD88 pathway related mitochondrial dysfunction in mice. Biochem Biophys Res Commun. 2017; 490: 841-8.
269. Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017; 7: 9523.
270. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012; 9: 219-30.
271. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao GX, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103: 3920-5.
272. Parseus A, Sommer N, Sommer F, Caesar R, Molinaro A, Stahlman M, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017; 66: 429-37.
273. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014; 7: 12-8.
274. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338: 120-3.
275. Hoffmann TW, Pham HP, Bridonneau C, Aubry C, Lamas B, Martin-Gallausiaux C, et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016; 10: 460-77.
276. Hansen JJ, Huang Y, Peterson DA, Goeser L, Fan TJ, Chang EB, et al. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS One. 2012; 7: e42645.
277. Morrison PJ, Ballantyne SJ, Macdonald SJ, Moore JW, Jenkins D, Wright JF, et al. Differential requirements for IL-17A and IL-22 in cecal versus colonic inflammation Induced by Helicobacter hepaticus. Am J Pathol. 2015; 185: 3290-303.
278. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012; 13: R79.
279. Pham NT, Thongprachum A, Tran DN, Nishimura S, Shimizu-Onda Y, Trinh QD, et al. Antibiotic resistance of campylobacter jejuni and C. coli isolated from children with diarrhea in Thailand and Japan. Jpn J Infect Dis. 2016; 69: 77-9.
280. Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology. 2013; 218: 645-51.
281. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004; 101: 1981-6.
282. Fox JG, Ge Z, Whary MT, Erdman SE, Horwitz BH. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol. 2011; 4: 22-30.
283. Foltz CJ, Fox JG, Cahill R, Murphy JC, Yan L, Shames B, et al. Spontaneous inflammatory bowel disease in multiple mutant mouse lines: association with colonization by Helicobacter hepaticus. Helicobacter. 1998; 3: 69-78.
284. Catry E, Bindels LB, Tailleux A, Lestavel S, Neyrinck AM, Goossens JF, et al. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut. 2017.
285. Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol. 2017; 8: 1765.
286. Smirnova MG, Guo L, Birchall JP, Pearson JP. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell Immunol. 2003; 221: 42-9.
287. Corazza GR, Ciccarelli R, Caciagli F, Gasbarrini G. Cyclic AMP and cyclic GMP levels in human colonic mucosa before and during chenodeoxycholic acid therapy. Gut. 1979; 20: 489-92.
288. Ballatori N, Li N, Fang F, Boyer JL, Christian WV, Hammond CL. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front Biosci (Landmark Ed). 2009; 14: 2829-44.
289. Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem. 2001; 276: 39411-8.
290. Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem. 2000; 275: 15122-7.
291. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013; 14: 676-84.
292. Torres J, Pineton de Chambrun G, Itzkowitz S, Sachar DB, Colombel JF. Review article: colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther. 2011; 34: 497-508.
293. de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 299: G440-8.
294. Coats SR, Berezow AB, To TT, Jain S, Bainbridge BW, Banani KP, et al. The lipid A phosphate position determines differential host Toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria. Infect Immun. 2011; 79: 203-10.
295. Berezow AB, Ernst RK, Coats SR, Braham PH, Karimi-Naser LM, Darveau RP. The structurally similar, penta-acylated lipopolysaccharides of Porphyromonas gingivalis and Bacteroides elicit strikingly different innate immune responses. Microb Pathog. 2009; 47: 68-77.
296. Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011; 141: 1792-801.
297. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9: 799-809.
298. Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol. 2015; 195: 4999-5010.
299. Kaser A, Martinez-Naves E, Blumberg RS. Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol. 2010; 26: 318-26.
300. Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol. 2009; 21: 156-63.
301. Gjymishka A, Coman RM, Brusko TM, Glover SC. Influence of host immunoregulatory genes, ER stress and gut microbiota on the shared pathogenesis of inflammatory bowel disease and Type 1 diabetes. Immunotherapy. 2013; 5: 1357-66.
302. Cao SS, Zimmermann EM, Chuang BM, Song B, Nwokoye A, Wilkinson JE, et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology. 2013; 144: 989-1000 e6.
303. Namba T, Tanaka K, Ito Y, Ishihara T, Hoshino T, Gotoh T, et al. Positive role of CCAAT/enhancer-binding protein homologous protein, a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis. Am J Pathol. 2009; 174: 1786-98.
304. Xiong X, Wang X, Lu Y, Wang E, Zhang Z, Yang J, et al. Hepatic steatosis exacerbated by endoplasmic reticulum stress-mediated downregulation of FXR in aging mice. J Hepatol. 2014; 60: 847-54.
305. Yu LC, Flynn AN, Turner JR, Buret AG. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J. 2005; 19: 1822-35.
306. Cario E. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis. 2010; 16: 1583-97.
307. Neufert C, Becker C, Tureci O, Waldner MJ, Backert I, Floh K, et al. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest. 2013; 123: 1428-43.
308. Garrett WS, Punit S, Gallini CA, Michaud M, Zhang D, Sigrist KS, et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell. 2009; 16: 208-19.
309. Brabletz T, Herrmann K, Jung A, Faller G, Kirchner T. Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol. 2000; 156: 865-70.
310. McLeod HL, Murray GI. Tumour markers of prognosis in colorectal cancer. Br J Cancer. 1999; 79: 191-203.
311. Mathonnet M, Perraud A, Christou N, Akil H, Melin C, Battu S, et al. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells. World J Gastroenterol. 2014; 20: 4189-96.
312. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011; 332: 1519-23.
313. Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol Rev. 2010; 90: 1165-94.
314. Joyce SA, Gahan CG. Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol. 2016; 7: 313-33.
315. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013; 1833: 3460-70.
316. Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016; 26: 249-61.
317. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016; 41: 1012-21.
318. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010; 10: 210-5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔