(54.236.58.220) 您好!臺灣時間:2021/03/09 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳巧如
研究生(外文):Chiao-Ju Chen
論文名稱:核心肌群訓練對慢性中風患者平衡及步態之效果
論文名稱(外文):Core muscles strengthening for balance and gait performance in individuals with chronic stroke
指導教授:王瑞瑤
指導教授(外文):Ray-Yau Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:中風核心肌群平衡步態
外文關鍵詞:StrokeCore musclesBalanceGait
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:核心肌群在我們人體當中扮演了一個重要的角色,它提供了我們近端的穩定度,以利軀幹控制、平衡維持及步態表現。中風患者常見平衡以及步態的異常,即使到了慢性期平衡及步態異常的問題仍然存在。核心肌群運動已經被證實可以有效的改善軀幹控制及平衡,但是很少研究探討有關核心肌群訓練之後,對於中風患者的步態對稱性、或提供核心肌群訓練效果之可能原因,亦無提供訓練後動態平衡量化的改變。因此,本研究之目的為探討以核心肌群之訓練對於慢性中風患者平衡及步態對稱性上的療效及提供訓練效果之可能原因。
方法:本研究為單盲、隨機控制實驗之研究設計,包含前測及後測。共計招募17位符合收案標準之慢性中風患者,隨機分成兩組,分別為核心肌群訓練組(n=9)及傳統訓練組(n=8)。每組皆接受一次30分鐘訓練,每週兩次,為期六週,總共12次訓練。主要結果測量為利用電腦平衡測試儀 (Balance Master®)量化平衡的表現以及利用步態分析儀(GAITRite®) 量測行走時之時間與空間參數的對稱性。利用肌肉力量測試儀量測軀幹肌力表現。所有的結果測量都將在介入前以及六週介入後評估。
統計分析:使用SPSS 20.0 統計軟體進行分析。變量的分佈表示為平均值±標準差或頻率。基本資料以曼惠特尼U檢定(Mann-Whitney U test) 或卡方檢定(Chi-square test) 檢定組間差異。使用魏氏帶符號等級試驗(Wilconxon signed rank test)檢定實驗組與控制組測量參數於介入前及介入後之組內差異。以曼惠特尼U檢定兩組介入前後改變量之組間差異,統計的顯著水準則定於p<0.05。
結果:六周訓練後,比較兩組組間介入後改變量,在身體穩定極限測試之動作速度往前(p=0.046)與往健側(p=0.006)有顯著差異;最大移動距離往前(p=0.027)、後(p=0.021)與往患側(p=0.036)有顯著差異;方向控制往前(p=0.011)與往健側(p=0.046)有顯著差異。步態則是在健側腳步長(p=0.046)、患側單腳支撐時間(p=0.021)、空間對稱指數(p=0.036) 和時間對稱指數(p=0.046)有顯著差異。軀幹肌力的部分則是在軀幹伸肌(p=0.027)、健側外屈肌(p=0.036)及患側外屈肌p=(0.021)有顯著差異。
結論:本研究發現慢性中風患者進行12次的核心肌群訓練合併行走訓練後,其動態平衡表現及空間及時間步態的對稱性均有明顯進步,且進步程度較傳統物理治療更好,可能部分之原因為軀幹的肌力的進步。因此核心肌群訓練對慢性中風患者來說是一有益的介入方式,以應用於臨床上。
Background and purpose: Core muscles are the key part of our body and play an important role in providing stability for balance and gait. Individuals with stroke often suffer from balance and gait problems even in the chronic stage. Core muscle training exercise has been reported to be beneficial for balance and trunk control. However, few studies investigated core muscle training for the gait symmetry and quantitative dynamic balance performance in chronic stroke patients. Thus, the aim of this study was to investigate the effects of core muscle training in chronic stroke patients for dynamic balance performance and gait symmetry.
Methods: This was a single-blinded, randomized controlled trial study. Seventeen subjects meeting the criteria were recruited and randomized to the core muscle training group and conventional training group. The training for each group was 30 minutes each time, twice a week for 6 weeks. Primary outcomes included dynamic balance performance indicated by limit of stability, the movement velocity, directional control, and maximum excursion measured by Balance Master and gait performance indicated by gait speed and temporal and spatial symmetry measured by GAITRite system. Secondary outcomes include trunk muscle strength measured by dynamometer. All outcomes were assessed before (pretest) and after (posttest) the 6-week training program. Mann-Whitney U test was used for comparing continuous variables and Chi-square test for categorical variables between groups. Wilcoxon signed rank test was used to examine within-group improvement and Mann-Whitney U test to examine between-group improvement. Statistical significance was set at p<0.05.
Results: In experimental group, all dynamic balance variables improved significantly after 12 sessions of core muscle training. In control group, movement velocity of limit of stability test to backwards and to affected side were significantly increased. Gait performance were also improved significantly in both groups. The between group comparisons showed significant difference in movement velocity of limit of stability test to forward (p=0.046) and to non-affected side (p=0.006); maximal excursion to forward (p=0.027), to backward (p=0.021), and to affected side (p=0.036); direction control to forward (p=0.011) and to non-affected side (p=0.046). In gait performance, the between group comparisons showed significant difference in affected side step length (p=0.046), affected side single leg support time (p=0.021), and spatial and temporal asymmetry ratio (p=0.036 and p=0.046 respectively). In trunk muscle strength, the between group comparisons showed significant difference in trunk extensors (p=0.027), affected-side trunk lateral flexors (p=0.036) and non-affected side lateral flexors (p=0.021).
Conclusion: The present results show that core muscle training exercise improved dynamic balance and gait symmetry which may be due to improved trunk muscle strength. Moreover, such improvements, especially the gait symmetry, may not be achieved easily by the traditional exercise program. Therefore, our result suggest that core muscle training is beneficial for patients with chronic stroke to improve the dynamic balance and gait symmetry.
目錄 I
表目錄 III
圖目錄 IV
附錄目錄 V
中文摘要 VI
英文摘要 VIII
第一章 前言 1
第一節 研究背景與動機 1
第二節 研究目的 1
第三節 研究假設 1
第四節 重要性 1
第二章 文獻回顧 2
第一節 中風患者平衡及步態表現 2
第三節 核心肌群訓練對於中風患者的效果 4
第四節 小結 4
第三章 研究方法 6
第一節 研究設計 6
第二節 研究流程 6
第三節 研究對象 6
第四節 評估參數與工具 7
第五節 介入方式 9
第六節 資料處理與分析方法 11
第四章 結果 12
第一節 受試者之參與狀況 12
第二節 受試者基本資料 12
第三節 動態平衡能力 13
第四節 步態表現 14
第五節 軀幹肌力表現 14
第五章 討論 16
第一節 受試者基本資料 16
第二節 動態平衡能力 17
第三節 步態表現 18
第四節 軀幹肌力 19
第五節 研究限制與未來建議 20
第六章 結論 21
參考文獻 22


表目錄
表一、受試者基本資料之組間比較 29
表二、兩組受試者前測動態平衡參數之組間比較 30
表三、兩組受試者前測步態參數之組間比較 31
表四、兩組受試者前測軀幹肌力參數之組間比較 32
表五、兩組之受試者動態平衡能力組內比較 33
表六、兩組之受試者步態參數組內比較 34
表七、兩組受試者軀幹肌力之組內比較 35
表八、兩組受試者動態平衡能力在介入後改變的組間比較 36
表九、兩組受試者步態參數在介入後改變的組間比較 37
表十、兩組受試者軀幹肌力在介入後改變的組間比較 38


圖目錄
圖一、研究流程圖 39
圖二、軀幹屈肌肌力測試 40
圖三、軀幹伸肌肌力測試 40
圖四、軀幹外屈肌肌力測試 40
1. Yen, S.-C., B.D. Schmit, and M. Wu, Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Human movement science, 2015. 42: p. 212-224.
2. Chun, S.-P., et al., A Study on Core Stability Training for Postural Control Ability and Respiratory Function in Patients with Chronic Stroke. International Journal of Bio-Science and Bio-Technology, 2015. 7(3): p. 83-90.
3. Escamilla, R.F., et al., Core muscle activation during Swiss ball and traditional abdominal exercises. journal of orthopaedic & sports physical therapy, 2010. 40(5): p. 265-276.
4. Yom, C., H.-y. Cho, and B. Lee, Effects of virtual reality-based ankle exercise on the dynamic balance, muscle tone, and gait of stroke patients. Journal of physical therapy science, 2015. 27(3): p. 845-849.
5. Wade, D.T. and R.L. Hewer, Functional abilities after stroke: measurement, natural history and prognosis. Journal of Neurology, Neurosurgery & Psychiatry, 1987. 50(2): p. 177-182.
6. Swinnen, E., et al., Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Topics in stroke rehabilitation, 2014. 21(2): p. 87-100.
7. Cho, D.Y., et al., Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators. Journal of physical therapy science, 2015. 27(10): p. 3053-3057.
8. Chen, I.-C., et al., Effects of balance training on hemiplegic stroke patients. Chang Gung medical journal, 2002. 25(9): p. 583-590.
9. Ki, K.-I., et al., Effects of auditory feedback during gait training on hemiplegic patients’ weight bearing and dynamic balance ability. Journal of physical therapy science, 2015. 27(4): p. 1267-1269.
10. Hesse, S., Rehabilitation of gait after stroke: evaluation, principles of therapy, novel treatment approaches, and assistive devices. Topics in Geriatric Rehabilitation, 2003. 19(2): p. 109-126.
11. Richards, C.L. and S.J. Olney, Hemiparetic gait following stroke. Part II: Recovery and physical therapy. Gait & Posture, 1996. 4(2): p. 149-162.
12. Kim, C.M. and J.J. Eng, The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Physical therapy, 2003. 83(1): p. 49-57.
13. Balaban, B. and F. Tok, Gait disturbances in patients with stroke. PM&R, 2014. 6(7): p. 635-642.
14. Afzal, M.R., et al., A portable gait asymmetry rehabilitation system for individuals with stroke using a vibrotactile feedback. BioMed research international, 2015. 2015.
15. Kumar, S., A. Kumar, and J. Kaur, Effect of PNF technique on gait parameters and functional mobility in hemiparetic patients. Journal of Exercise Science and Physiotherapy, 2012. 8(2): p. 67.
16. Goldie, P.A., T.A. Matyas, and O.M. Evans, Deficit and change in gait velocity during rehabilitation after stroke. Archives of physical medicine and rehabilitation, 1996. 77(10): p. 1074-1082.
17. Kim, K.Y., et al., Effects of core stability training on postural control ability and respiratory function in chronic stroke patients. Adv Sci Technol Lett, 2015. 88(88): p. 181-186.
18. Marshall, P.W. and B.A. Murphy, Core stability exercises on and off a Swiss ball. Archives of physical medicine and rehabilitation, 2005. 86(2): p. 242-249.
19. BarbaraJ.H., Clinical orthopaedic rehabilitation (3rd ed): Core stabilization training. Philadephia:ELSEVIER, 2011.
20. Kibler, W.B., J. Press, and A. Sciascia, The role of core stability in athletic function. Sports medicine, 2006. 36(3): p. 189-198.
21. Yu, S.-H. and S.-D. Park, The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients. Journal of exercise rehabilitation, 2013. 9(3): p. 362.
22. Trentman, C., Core stability: Pilates is another important tool in a therapist’s professional repertoire. Advance for Directors in Rehabilitation, 2003. 12: p. 51.
23. Hodges, P.W., Core stability exercise in chronic low back pain. Orthopedic Clinics of North America, 2003. 34(2): p. 245-254.
24. McGill, S.M., Low back stability: from formal description to issues for performance and rehabilitation. Exercise and sport sciences reviews, 2001. 29(1): p. 26-31.
25. McGill, S.M., et al., Coordination of muscle activity to assure stability of the lumbar spine. Journal of electromyography and kinesiology, 2003. 13(4): p. 353-359.
26. Park, J.H. and G. Hwangbo, The effect of trunk stabilization exercises using a sling on the balance of patients with hemiplegia. Journal of physical therapy science, 2014. 26(2): p. 219-221.
27. Cabanas-Valdés, R., et al., The effect of additional core stability exercises on improving dynamic sitting balance and trunk control for subacute stroke patients: a randomized controlled trial. Clinical rehabilitation, 2016. 30(10): p. 1024-1033.
28. Chung, E.-J., J.-H. Kim, and B.-H. Lee, The effects of core stabilization exercise on dynamic balance and gait function in stroke patients. Journal of physical therapy science, 2013. 25(7): p. 803-806.
29. Yoo, J., J. Jeong, and W. Lee, The effect of trunk stabilization exercise using an unstable surface on the abdominal muscle structure and balance of stroke patients. Journal of physical therapy science, 2014. 26(6): p. 857-859.
30. Chien, C.-W., et al., A comparison of psychometric properties of the smart balance master system and the postural assessment scale for stroke in people who have had mild stroke. Archives of physical medicine and rehabilitation, 2007. 88(3): p. 374-380.
31. McDonough, A.L., et al., The validity and reliability of the GAITRite system's measurements: A preliminary evaluation. Archives of physical medicine and rehabilitation, 2001. 82(3): p. 419-425.
32. Van Uden, C.J. and M.P. Besser, Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite®). BMC Musculoskeletal Disorders, 2004. 5(1): p. 13.
33. Lin, P.-Y., et al., The relation between ankle impairments and gait velocity and symmetry in people with stroke. Archives of physical medicine and rehabilitation, 2006. 87(4): p. 562-568.
34. Bohannon, R.W., Lateral trunk flexion strength: impairment, measurement reliability and implications following unilateral brain lesion. International Journal of Rehabilitation Research, 1992. 15(3): p. 249-251.
35. Bohannon, R.W., D. Cassidy, and S. Walsh, Trunk muscle strength is impaired multidirectionally after stroke. Clinical rehabilitation, 1995. 9(1): p. 47-51.
36. Bohannon, R.W., Recovery and correlates of trunk muscle strength after stroke. International Journal of Rehabilitation Research, 1995. 18(2): p. 162-167.
37. Akuthota, V., et al., Core stability exercise principles. Current sports medicine reports, 2008. 7(1): p. 39-44.
38. Hicks, G.E., et al., Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Archives of physical medicine and rehabilitation, 2005. 86(9): p. 1753-1762.
39. Jongbloed, L., Prediction of function after stroke: a critical review. Stroke, 1986. 17(4): p. 765-776.
40. Paolucci, S., et al., Is sex a prognostic factor in stroke rehabilitation? Stroke, 2006. 37(12): p. 2989-2994.
41. Haruyama, K., M. Kawakami, and T. Otsuka, Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 2017. 31(3): p. 240-249.
42. Karthikbabu, S., et al., Comparison of physio ball and plinth trunk exercises regimens on trunk control and functional balance in patients with acute stroke: a pilot randomized controlled trial. Clinical rehabilitation, 2011. 25(8): p. 709-719.
43. Kahle, N. and M.A. Tevald, Core muscle strengthening’s improvement of balance Performance in community-dwelling older adults: a pilot study. Journal of aging and physical activity, 2014. 22(1): p. 65-73.
44. Kim EJ, H.B., Kim JH., The effect of core stability strength exercise for balance and walking in patient with stroke. J Kor Soc Phys Ther. , 2009. 21(4): p. 17-22.
45. De Quervain, I.A.K., et al., Gait pattern in the early recovery period after stroke. JBJS, 1996. 78(10): p. 1506-14.
46. Pinzur, M.S., et al., Gait changes in adult onset hemiplegia. American Journal of Physical Medicine & Rehabilitation, 1987. 66(5): p. 228-237.
47. Peat, M., et al., Electromyographic temporal analysis of gait: hemiplegic locomotion. Archives of physical medicine and rehabilitation, 1976. 57(9): p. 421-425.
48. Corcoran, P., Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Rehabil, 1970. 51: p. 69-77.
49. Zamparo, P., et al., The energy cost of level walking in patients with hemiplegia. Scandinavian journal of medicine & science in sports, 1995. 5(6): p. 348-352.
50. Platts, M.M., D. Rafferty, and L. Paul, Metabolic cost of over ground gait in younger stroke patients and healthy controls. Medicine and Science in Sports and Exercise, 2006. 38(6): p. 1041-1046.
51. Waters, R.L. and S. Mulroy, The energy expenditure of normal and pathologic gait. Gait & posture, 1999. 9(3): p. 207-231.
52. Patterson, K.K., et al., Gait symmetry and velocity differ in their relationship to age. Gait & posture, 2012. 35(4): p. 590-594.
53. Richards CI, M.F., Dumas F, Tardif D., Gait velocity as an outcome Analysis: Theory and Applications. 1995: p. P355-64.
54. Jung, K.-M., Effects of Core Stability Exercises on Energy Expenditure During Gait in Subacute Stroke Patients. 신경치료, 2017. 21(1): p. 7-13.
55. Park, B.-S., et al., A comparative study of the effects of trunk exercise program in aquatic and land-based therapy on gait in hemiplegic stroke patients. Journal of physical therapy science, 2016. 28(6): p. 1904-1908.
56. Moon, S.-J. and T.-H. Kim, Effect of three-dimensional spine stabilization exercise on trunk muscle strength and gait ability in chronic stroke patients: A randomized controlled trial. NeuroRehabilitation, 2017(Preprint): p. 1-9.
57. Verheyden, G., et al., Trunk performance after stroke and the relationship with balance, gait and functional ability. Clinical rehabilitation, 2006. 20(5): p. 451-458.
58. Karatas, M., et al., Trunk muscle strength in relation to balance and functional disability in unihemispheric stroke patients. American journal of physical medicine & rehabilitation, 2004. 83(2): p. 81-87.
59. Fujita, T., et al., Contribution of abdominal muscle strength to various activities of daily living of stroke patients with mild paralysis. Journal of physical therapy science, 2015. 27(3): p. 815-818.
60. Tanaka, S., K. Hachisuka, and H. Ogata, TRUNK ROTATORY MUSCLE PERFORMANCE IN POST-STROKE HEMIPLEGIC PATIENTS1. American journal of physical medicine & rehabilitation, 1997. 76(5): p. 366-369.
61. Tanaka, S., K. Hachisuka, and H. Ogata, Muscle strength of trunk flexion-extension in post-stroke hemiplegic Patients1. American journal of physical medicine & rehabilitation, 1998. 77(4): p. 288-290.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔