|
1. Debili, N., Coulombel, L., Croisille, L., Katz, A., Guichard, J., Breton-Gorius, J. & Vainchenker, W. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88, 1284-1296 (1996). 2. Geddis, A.E. Megakaryopoiesis. Semin Hematol 47, 212-219 (2010). 3. Deutsch, V.R. & Tomer, A. Megakaryocyte development and platelet production. Br J Haematol 134, 453-466 (2006). 4. Kaushansky, K. Lineage-specific hematopoietic growth factors. N Engl J Med 354, 2034-2045 (2006). 5. Avecilla, S.T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D.K., Dias, S., Zhang, F., Hartman, T.E., Hackett, N.R., Crystal, R.G., Witte, L., Hicklin, D.J., Bohlen, P., Eaton, D., Lyden, D., de Sauvage, F. & Rafii, S. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64-71 (2004). 6. Chang, Y., Bluteau, D., Debili, N. & Vainchenker, W. From hematopoietic stem cells to platelets. J Thromb Haemost 5 Suppl 1, 318-327 (2007). 7. Geddis, A.E., Linden, H.M. & Kaushansky, K. Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Rev 13, 61-73 (2002). 8. Nowak, D., Stewart, D. & Koeffler, H.P. Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655-3665 (2009). 9. Olsen, R.J., Chang, C.C., Herrick, J.L., Zu, Y. & Ehsan, A. Acute leukemia immunohistochemistry: a systematic diagnostic approach. Arch Pathol Lab Med 132, 462-475 (2008). 10. Faderl, S., Talpaz, M., Estrov, Z. & Kantarjian, H.M. Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131, 207-219 (1999). 11. Savage, D.G., Szydlo, R.M. & Goldman, J.M. Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96, 111-116 (1997). 12. Kuter, D.J., Bussel, J.B., Lyons, R.M., Pullarkat, V., Gernsheimer, T.B., Senecal, F.M., Aledort, L.M., George, J.N., Kessler, C.M., Sanz, M.A., Liebman, H.A., Slovick, F.T., de Wolf, J.T., Bourgeois, E., Guthrie, T.H., Jr., Newland, A., Wasser, J.S., Hamburg, S.I., Grande, C., Lefrere, F., Lichtin, A.E., Tarantino, M.D., Terebelo, H.R., Viallard, J.F., Cuevas, F.J., Go, R.S., Henry, D.H., Redner, R.L., Rice, L., Schipperus, M.R., Guo, D.M. & Nichol, J.L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet 371, 395-403 (2008). 13. Merli, P., Strocchio, L., Vinti, L., Palumbo, G. & Locatelli, F. Eltrombopag for treatment of thrombocytopenia-associated disorders. Expert Opin Pharmacother 16, 2243-2256 (2015). 14. Jabbour, E. & Kantarjian, H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91, 252-265 (2016). 15. Carter, B.Z., Mak, P.Y., Mu, H., Zhou, H., Mak, D.H., Schober, W., Leverson, J.D., Zhang, B., Bhatia, R., Huang, X., Cortes, J., Kantarjian, H., Konopleva, M. & Andreeff, M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 8, 355ra117 (2016). 16. Jabbour, E., Kantarjian, H. & Cortes, J. Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin Lymphoma Myeloma Leuk 15, 323-334 (2015). 17. Gambacorti-Passerini, C., Antolini, L., Mahon, F.X., Guilhot, F., Deininger, M., Fava, C., Nagler, A., Della Casa, C.M., Morra, E., Abruzzese, E., D'Emilio, A., Stagno, F., le Coutre, P., Hurtado-Monroy, R., Santini, V., Martino, B., Pane, F., Piccin, A., Giraldo, P., Assouline, S., Durosinmi, M.A., Leeksma, O., Pogliani, E.M., Puttini, M., Jang, E., Reiffers, J., Piazza, R., Valsecchi, M.G. & Kim, D.W. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 103, 553-561 (2011). 18. Bhamidipati, P.K., Kantarjian, H., Cortes, J., Cornelison, A.M. & Jabbour, E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol 4, 103-117 (2013). 19. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290 (2003). 20. Tabilio, A., Pelicci, P.G., Vinci, G., Mannoni, P., Civin, C.I., Vainchenker, W., Testa, U., Lipinski, M., Rochant, H. & Breton-Gorius, J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res 43, 4569-4574 (1983). 21. Conde, I., Pabon, D., Jayo, A., Lastres, P. & Gonzalez-Manchon, C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 84, 430-440 (2010). 22. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S., Legros, L., Deckert, M., Mari, B., Cassuto, J.P., Hofman, P. & Auberger, P. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-794 (2006). 23. He, D., Chen, T., Yang, M., Zhu, X., Wang, C., Cao, X. & Cai, Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J Mol Med (Berl) 89, 137-150 (2011). 24. Jacquel, A., Herrant, M., Legros, L., Belhacene, N., Luciano, F., Pages, G., Hofman, P. & Auberger, P. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage. Faseb j 17, 2160-2162 (2003). 25. Whalen, A.M., Galasinski, S.C., Shapiro, P.S., Nahreini, T.S. & Ahn, N.G. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 17, 1947-1958 (1997). 26. Racke, F.K., Lewandowska, K., Goueli, S. & Goldfarb, A.N. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 272, 23366-23370 (1997). 27. Chang, Y.I., Hua, W.K., Yao, C.L., Hwang, S.M., Hung, Y.C., Kuan, C.J., Leou, J.S. & Lin, W.J. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 285, 20595-20606 (2010). 28. Lin, W.-L. To investigate the potential role of Rho GDP dissociation inhibitor α (RhoGDIα) inPMA-induced megakaryocytic differentiation of K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2011). 29. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290 (2003). 30. Scheffzek, K. & Ahmadian, M.R. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62, 3014-3038 (2005). 31. Khafizov, K., Lattanzi, G. & Carloni, P. G protein inactive and active forms investigated by simulation methods. Proteins 75, 919-930 (2009). 32. Goitre, L., Trapani, E., Trabalzini, L. & Retta, S.F. The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120, 1-18 (2014). 33. Feng, Y., Wen, J. & Chang, C.C. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 133, 1850-1856 (2009). 34. Pertz, O. Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123, 1841-1850 (2010). 35. Strutt, D.I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292-295 (1997). 36. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. & Chen, C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495 (2004). 37. Sylow, L., Nielsen, I.L., Kleinert, M., Moller, L.L., Ploug, T., Schjerling, P., Bilan, P.J., Klip, A., Jensen, T.E. & Richter, E.A. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol 594, 4997-5008 (2016). 38. Qadir, M.I., Parveen, A. & Ali, M. Cdc42: Role in Cancer Management. Chem Biol Drug Des 86, 432-439 (2015). 39. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93, 269-309 (2013). 40. Garcia-Mata, R., Boulter, E. & Burridge, K. The invisible hand: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12, 493-504. 41. Keep, N.H., Barnes, M., Barsukov, I., Badii, R., Lian, L.Y., Segal, A.W., Moody, P.C. & Roberts, G.C. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623-633 (1997). 42. Mulloy, J.C., Cancelas, J.A., Filippi, M.D., Kalfa, T.A., Guo, F. & Zheng, Y. Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936-947 (2010). 43. Heasman, S.J. & Ridley, A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690-701 (2008). 44. Wang, Z. & Thurmond, D.C. Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem 285, 6186-6197 (2010). 45. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15, 117-127 (2004). 46. Kuhlmann, N., Wroblowski, S., Knyphausen, P., de Boor, S., Brenig, J., Zienert, A.Y., Meyer-Teschendorf, K., Praefcke, G.J., Nolte, H., Kruger, M., Schacherl, M., Baumann, U., James, L.C., Chin, J.W. & Lammers, M. Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIalpha by Lysine Acetylation. J Biol Chem 291, 5484-5499 (2016). 47. Kuhlmann, N., Wroblowski, S., Scislowski, L. & Lammers, M. RhoGDIalpha Acetylation at K127 and K141 Affects Binding toward Nonprenylated RhoA. Biochemistry 55, 304-312 (2016). 48. Yu, J., Zhang, D., Liu, J., Li, J., Yu, Y., Wu, X.R. & Huang, C. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J Biol Chem 287, 13752-13760 (2012). 49. Guerrera, I.C., Keep, N.H. & Godovac-Zimmermann, J. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts. J Proteome Res 6, 2623-2630 (2007). 50. Ou, Y. To investigate the role of arginine methylation of Rho GDP dissociation inhibitor α (RhoGDIα) in megakaryocytic differentiation of K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2013). 51. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13 (2009). 52. Zakrzewicz, D., Zakrzewicz, A., Preissner, K.T., Markart, P. & Wygrecka, M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 13, 12383-12400 (2012). 53. Liao, L.-L. To elucidate the molecular mechanisms involved in protein arginine methyltransferase 6-mediated promotion of megakaryocytic differentiation in k562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2014). 54. Lo Sardo, A., Altamura, S., Pegoraro, S., Maurizio, E., Sgarra, R. & Manfioletti, G. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6). PLoS One 8, e53750 (2013). 55. Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S. & Bedford, M.T. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277, 3537-3543 (2002). 56. Singhroy, D.N., Mesplède, T., Sabbah, A., Quashie, P.K., Falgueyret, J.-P. & Wainberg, M.A. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 10, 73-73 (2013). 57. Di Lorenzo, A. & Bedford, M.T. Histone arginine methylation. FEBS Lett 585, 2024-2031 (2011). 58. Waldmann, T., Izzo, A., Kamieniarz, K., Richter, F., Vogler, C., Sarg, B., Lindner, H., Young, N.L., Mittler, G., Garcia, B.A. & Schneider, R. Methylation of H2AR29 is a novel repressive PRMT6 target. Epi Chro 4, 11 (2011). 59. Kleinschmidt, M.A., de Graaf, P., van Teeffelen, H.A.A.M. & Timmers, H.T.M. Cell Cycle Regulation by the PRMT6 Arginine Methyltransferase through Repression of Cyclin-Dependent Kinase Inhibitors. PLoS ONE 7, e41446 (2012). 60. Stein, C., Riedl, S., Rüthnick, D., Nötzold, R.R. & Bauer, U.-M. The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 40, 9522-9533 (2012). 61. Chan, H.-Y. Biochemical and functional studies of RhoGDIα methylation by PRMT6. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2016). 62. Hsu, K.-S. Investigating the molecular mechanisms through which RhoGDIα regulates megakaryocyte differentiation in K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2015). 63. Sun, Y., Chung, H.H., Woo, A.R.E. & Lin, V.C.L. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms. Biochim Biophys Acta 1843, 2067-2078 (2014).
|