跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾俊賢
研究生(外文):Chun-Hsien Tseng
論文名稱:探討精氨酸甲基化對RhoGDIα功能的影響
論文名稱(外文):Investigating the effect of arginine methylation on RhoGDIα function
指導教授:林蔚靖
指導教授(外文):Wey-Jinq Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:59
中文關鍵詞:巨核球分化甲基化
外文關鍵詞:Megakaryocytic differentiationMethylationRhoGDIα
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RhoGDIα (Rho GDP-dissociation inhibitor) 透過負向或正向調節Rho family GTPases的活性,來調控多種重要的細胞運作,包括細胞分化以及惡性疾病生成。血小板在人體中執行凝血功能,而巨核球 (MKs) 是循環血小板的唯一來源。我們之前的研究揭露,當 PMA (phorbol 12-myristate 13-acetate) 處理K562細胞時,RhoGDIα會促進巨核球分化。我們還發現Rac1能介導RhoGDIα對巨核球分化的影響,並且為RhoGDIα下游GTPase。目前已經在RhoGDIα上發現了許多轉譯後修飾 (PTM),然而這些轉譯後修飾如何影響RhoGDIα的功能仍然有很大程度上的未知。我們最近透過液相層析串連式質譜儀鑑定出K562細胞中RhoGDIα的R111和R172具有雙甲基化修飾。我的研究發現,R111突變為K111顯著降低了PMA誘導巨核球分化時RhoGDIα的促進作用。R172的突變雖然影響了分化,但程度較小。另外,過度表現這些非甲基化RhoGDIα突變蛋白會對K562細胞走向巨核球分化有dominant negative的影響。我的研究進一步揭露,R111K突變大幅降低了RhoGDIα與Rac1 GTPase的結合,這可能導致Rac1的活化和巨核球分化的抑制。在努力找尋RhoGDIα上游潛在的甲基轉移酶之下,我以體外甲基化的方式進行測定並且結果顯示蛋白質精氨酸甲基轉移酶6 (PRMT6) 可以甲基化RhoGDIα。由於我們先前實驗室研究發現PRMT6可以促進K562細胞的巨核球分化,而RhoGDIα R111能反過來透過結合更多的Rac1 GTPase促進巨核球分化,因此PRMT6可能是甲基化RhoGDIα R111的潛在調節因子。未來,我們希望透過瞭解巨核球分化的機制,為血球分化異常相關疾病提供新的治療策略。
RhoGDIα (Rho GDP-dissociation inhibitor) plays important roles in regulating a variety of cellular processes, including cell differentiation and malignancy, by either negatively or positively modulating the activity of Rho family GTPases. Megakaryocytes (MKs) are the sole source of circulating platelets which perform coagulation in human. Our previous research showed that RhoGDIα up-regulated megakaryocytic differentiation of K562 cells upon induction by PMA (phorbol 12-myristate 13-acetate) treatment. We also identified that Rac1 was the downstream GTPase which mediated the effect of RhoGDIα on MK differentiation. Various post-translational modifications (PTMs) have been found on RhoGDIα, however, the functional impacts of these PTMs are still largely unknown. We recently identified by LC-MS/MS (liquid chromatography-tandem mass spectrometry) that R111 and R172 of RhoGDIα were di-methylated in K562 cells. My study found that mutation of R111 to K111 significantly reduced the promotive effect of RhoGDIα on PMA-induced MK differentiation. Mutation of R172 also affected differentiation, although to a less extent. Overexpression of these non-methylation RhoGDIα mutant proteins resulted in a dominant negative effect on MK differentiation in K562 cells. My study further showed that R111K mutation greatly decreased the association of RhoGDIα with Rac1 GTPase which likely leads to the activation of Rac1 and a suppression of MK differentiation. In the effort of searching for the potential upstream methyltransferase for RhoGDIα, I performed in vitro methylation assay and showed that protein arginine methyltransferase 6 (PRMT6) could methylate RhoGDIα. Since our previous study has shown that PRMT6 can promote MK differentiation of K562 cells, PRMT6 is a potential regulator of RhoGDIα by methylation on R111, which in turn promote MK differentiation by sequestering more Rac1 GTPase. In the future, we hope to provide a new treatment strategy for diseases related to abnormal blood cell differentiation by understanding the relevant mechanisms of the differentiation of MK.
目錄...........................................i
圖次目錄......................................ii
縮寫表........................................iv
中文摘要......................................vi
英文摘要......................................vii
緒論..........................................1
研究目標......................................9
實驗材料......................................10
實驗方法......................................15
結果..........................................24
討論..........................................31
參考文獻......................................36
圖............................................42

圖次目錄
Figure 1. Schematic representation of the construction of plasmids harboring pcDNA3-HA2-RhoGDIα R172K single mutation....................................................p42
Figure 2. Examination of pcDNA3-HA2-RhoGDIα R172K plasmids....................................................p43
Figure 3. Schematic representation of the construction of plasmids harboring pcDNA3-HA2-RhoGDIα R111K single mutation....................................................p44
Figure 4. Examination of pcDNA3-HA2-RhoGDIα R111K plasmids....................................................p45
Figure 5. Schematic representation of the construction of plasmids harboring pcDNA3-HA2-RhoGDIα R111/172K double mutation....................................................p46
Figure 6. Examination of pcDNA3-HA2-RhoGDIα R111/172K plasmids....................................................p47
Figure 7. The arginine methylation status of RhoGDIα in 50B4 cells.......................................................p48
Figure 8. Analysis of megakaryocytic differentiation upon PMA stimulation in K562 cells...................................p49
Figure 9. Single mutation of R111K or R172K and double mutation of R111/172K reduce megakaryocytic differentiation in K562 cells.......................................................p50
Figure 10. Single mutation of R111K or R172K and double mutation of R111/172K reduce megakaryocytic differentiation in 50B4 cells..................................................p51
Figure 11. Arginine methylation of RhoGDIα was required for the stimulatory effect of PRMT6 on megakaryocytic differentiation.............................................p52
Figure 12. The arginine methylation status of RhoGDIα WT and R111K mutant................................................p53
Figure 13. The Rac1 protein was associated with HA-RhoGDIα in immunoprecipitates from K562 cells..........................p54
Figure 14. PMA stimulation increased binding of RhoGDIα with Rac1........................................................p55
Figure 15. Mutation of RhoGDIα R111K reduced binding with Rac1........................................................p56
Figure 16. PMA treatment did not change the protein levels of PRMT6, RhoGDIα and Rac1................................... p57
Figure 17. Purification of recombinant His-fused RhoGDIα proteins....................................................p58
Figure 18. Immunoprecipitated HA-PRMT6 methylated RhoGDIα in vitro methylation assay.....................................p59
1. Debili, N., Coulombel, L., Croisille, L., Katz, A., Guichard, J., Breton-Gorius, J. & Vainchenker, W. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88, 1284-1296 (1996).
2. Geddis, A.E. Megakaryopoiesis. Semin Hematol 47, 212-219 (2010).
3. Deutsch, V.R. & Tomer, A. Megakaryocyte development and platelet production. Br J Haematol 134, 453-466 (2006).
4. Kaushansky, K. Lineage-specific hematopoietic growth factors. N Engl J Med 354, 2034-2045 (2006).
5. Avecilla, S.T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D.K., Dias, S., Zhang, F., Hartman, T.E., Hackett, N.R., Crystal, R.G., Witte, L., Hicklin, D.J., Bohlen, P., Eaton, D., Lyden, D., de Sauvage, F. & Rafii, S. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64-71 (2004).
6. Chang, Y., Bluteau, D., Debili, N. & Vainchenker, W. From hematopoietic stem cells to platelets. J Thromb Haemost 5 Suppl 1, 318-327 (2007).
7. Geddis, A.E., Linden, H.M. & Kaushansky, K. Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Rev 13, 61-73 (2002).
8. Nowak, D., Stewart, D. & Koeffler, H.P. Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655-3665 (2009).
9. Olsen, R.J., Chang, C.C., Herrick, J.L., Zu, Y. & Ehsan, A. Acute leukemia immunohistochemistry: a systematic diagnostic approach. Arch Pathol Lab Med 132, 462-475 (2008).
10. Faderl, S., Talpaz, M., Estrov, Z. & Kantarjian, H.M. Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131, 207-219 (1999).
11. Savage, D.G., Szydlo, R.M. & Goldman, J.M. Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96, 111-116 (1997).
12. Kuter, D.J., Bussel, J.B., Lyons, R.M., Pullarkat, V., Gernsheimer, T.B., Senecal, F.M., Aledort, L.M., George, J.N., Kessler, C.M., Sanz, M.A., Liebman, H.A., Slovick, F.T., de Wolf, J.T., Bourgeois, E., Guthrie, T.H., Jr., Newland, A., Wasser, J.S., Hamburg, S.I., Grande, C., Lefrere, F., Lichtin, A.E., Tarantino, M.D., Terebelo, H.R., Viallard, J.F., Cuevas, F.J., Go, R.S., Henry, D.H., Redner, R.L., Rice, L., Schipperus, M.R., Guo, D.M. & Nichol, J.L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet 371, 395-403 (2008).
13. Merli, P., Strocchio, L., Vinti, L., Palumbo, G. & Locatelli, F. Eltrombopag for treatment of thrombocytopenia-associated disorders. Expert Opin Pharmacother 16, 2243-2256 (2015).
14. Jabbour, E. & Kantarjian, H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91, 252-265 (2016).
15. Carter, B.Z., Mak, P.Y., Mu, H., Zhou, H., Mak, D.H., Schober, W., Leverson, J.D., Zhang, B., Bhatia, R., Huang, X., Cortes, J., Kantarjian, H., Konopleva, M. & Andreeff, M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 8, 355ra117 (2016).
16. Jabbour, E., Kantarjian, H. & Cortes, J. Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin Lymphoma Myeloma Leuk 15, 323-334 (2015).
17. Gambacorti-Passerini, C., Antolini, L., Mahon, F.X., Guilhot, F., Deininger, M., Fava, C., Nagler, A., Della Casa, C.M., Morra, E., Abruzzese, E., D'Emilio, A., Stagno, F., le Coutre, P., Hurtado-Monroy, R., Santini, V., Martino, B., Pane, F., Piccin, A., Giraldo, P., Assouline, S., Durosinmi, M.A., Leeksma, O., Pogliani, E.M., Puttini, M., Jang, E., Reiffers, J., Piazza, R., Valsecchi, M.G. & Kim, D.W. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 103, 553-561 (2011).
18. Bhamidipati, P.K., Kantarjian, H., Cortes, J., Cornelison, A.M. & Jabbour, E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol 4, 103-117 (2013).
19. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290 (2003).
20. Tabilio, A., Pelicci, P.G., Vinci, G., Mannoni, P., Civin, C.I., Vainchenker, W., Testa, U., Lipinski, M., Rochant, H. & Breton-Gorius, J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res 43, 4569-4574 (1983).
21. Conde, I., Pabon, D., Jayo, A., Lastres, P. & Gonzalez-Manchon, C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 84, 430-440 (2010).
22. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S., Legros, L., Deckert, M., Mari, B., Cassuto, J.P., Hofman, P. & Auberger, P. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25, 781-794 (2006).
23. He, D., Chen, T., Yang, M., Zhu, X., Wang, C., Cao, X. & Cai, Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J Mol Med (Berl) 89, 137-150 (2011).
24. Jacquel, A., Herrant, M., Legros, L., Belhacene, N., Luciano, F., Pages, G., Hofman, P. & Auberger, P. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage. Faseb j 17, 2160-2162 (2003).
25. Whalen, A.M., Galasinski, S.C., Shapiro, P.S., Nahreini, T.S. & Ahn, N.G. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 17, 1947-1958 (1997).
26. Racke, F.K., Lewandowska, K., Goueli, S. & Goldfarb, A.N. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 272, 23366-23370 (1997).
27. Chang, Y.I., Hua, W.K., Yao, C.L., Hwang, S.M., Hung, Y.C., Kuan, C.J., Leou, J.S. & Lin, W.J. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 285, 20595-20606 (2010).
28. Lin, W.-L. To investigate the potential role of Rho GDP dissociation inhibitor α (RhoGDIα) inPMA-induced megakaryocytic differentiation of K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2011).
29. Tsiftsoglou, A.S., Pappas, I.S. & Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290 (2003).
30. Scheffzek, K. & Ahmadian, M.R. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62, 3014-3038 (2005).
31. Khafizov, K., Lattanzi, G. & Carloni, P. G protein inactive and active forms investigated by simulation methods. Proteins 75, 919-930 (2009).
32. Goitre, L., Trapani, E., Trabalzini, L. & Retta, S.F. The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120, 1-18 (2014).
33. Feng, Y., Wen, J. & Chang, C.C. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 133, 1850-1856 (2009).
34. Pertz, O. Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 123, 1841-1850 (2010).
35. Strutt, D.I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292-295 (1997).
36. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. & Chen, C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495 (2004).
37. Sylow, L., Nielsen, I.L., Kleinert, M., Moller, L.L., Ploug, T., Schjerling, P., Bilan, P.J., Klip, A., Jensen, T.E. & Richter, E.A. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol 594, 4997-5008 (2016).
38. Qadir, M.I., Parveen, A. & Ali, M. Cdc42: Role in Cancer Management. Chem Biol Drug Des 86, 432-439 (2015).
39. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93, 269-309 (2013).
40. Garcia-Mata, R., Boulter, E. & Burridge, K. The invisible hand: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12, 493-504.
41. Keep, N.H., Barnes, M., Barsukov, I., Badii, R., Lian, L.Y., Segal, A.W., Moody, P.C. & Roberts, G.C. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623-633 (1997).
42. Mulloy, J.C., Cancelas, J.A., Filippi, M.D., Kalfa, T.A., Guo, F. & Zheng, Y. Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936-947 (2010).
43. Heasman, S.J. & Ridley, A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690-701 (2008).
44. Wang, Z. & Thurmond, D.C. Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem 285, 6186-6197 (2010).
45. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15, 117-127 (2004).
46. Kuhlmann, N., Wroblowski, S., Knyphausen, P., de Boor, S., Brenig, J., Zienert, A.Y., Meyer-Teschendorf, K., Praefcke, G.J., Nolte, H., Kruger, M., Schacherl, M., Baumann, U., James, L.C., Chin, J.W. & Lammers, M. Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIalpha by Lysine Acetylation. J Biol Chem 291, 5484-5499 (2016).
47. Kuhlmann, N., Wroblowski, S., Scislowski, L. & Lammers, M. RhoGDIalpha Acetylation at K127 and K141 Affects Binding toward Nonprenylated RhoA. Biochemistry 55, 304-312 (2016).
48. Yu, J., Zhang, D., Liu, J., Li, J., Yu, Y., Wu, X.R. & Huang, C. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J Biol Chem 287, 13752-13760 (2012).
49. Guerrera, I.C., Keep, N.H. & Godovac-Zimmermann, J. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts. J Proteome Res 6, 2623-2630 (2007).
50. Ou, Y. To investigate the role of arginine methylation of Rho GDP dissociation inhibitor α (RhoGDIα) in megakaryocytic differentiation of K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2013).
51. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13 (2009).
52. Zakrzewicz, D., Zakrzewicz, A., Preissner, K.T., Markart, P. & Wygrecka, M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 13, 12383-12400 (2012).
53. Liao, L.-L. To elucidate the molecular mechanisms involved in protein arginine methyltransferase 6-mediated promotion of megakaryocytic differentiation in k562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2014).
54. Lo Sardo, A., Altamura, S., Pegoraro, S., Maurizio, E., Sgarra, R. & Manfioletti, G. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6). PLoS One 8, e53750 (2013).
55. Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S. & Bedford, M.T. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277, 3537-3543 (2002).
56. Singhroy, D.N., Mesplède, T., Sabbah, A., Quashie, P.K., Falgueyret, J.-P. & Wainberg, M.A. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 10, 73-73 (2013).
57. Di Lorenzo, A. & Bedford, M.T. Histone arginine methylation. FEBS Lett 585, 2024-2031 (2011).
58. Waldmann, T., Izzo, A., Kamieniarz, K., Richter, F., Vogler, C., Sarg, B., Lindner, H., Young, N.L., Mittler, G., Garcia, B.A. & Schneider, R. Methylation of H2AR29 is a novel repressive PRMT6 target. Epi Chro 4, 11 (2011).
59. Kleinschmidt, M.A., de Graaf, P., van Teeffelen, H.A.A.M. & Timmers, H.T.M. Cell Cycle Regulation by the PRMT6 Arginine Methyltransferase through Repression of Cyclin-Dependent Kinase Inhibitors. PLoS ONE 7, e41446 (2012).
60. Stein, C., Riedl, S., Rüthnick, D., Nötzold, R.R. & Bauer, U.-M. The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 40, 9522-9533 (2012).
61. Chan, H.-Y. Biochemical and functional studies of RhoGDIα methylation by PRMT6. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2016).
62. Hsu, K.-S. Investigating the molecular mechanisms through which RhoGDIα regulates megakaryocyte differentiation in K562 cells. National Yang-Ming University Institute of Biopharmaceutical Science Master Thesis. (2015).
63. Sun, Y., Chung, H.H., Woo, A.R.E. & Lin, V.C.L. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms. Biochim Biophys Acta 1843, 2067-2078 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top