(3.235.108.188) 您好!臺灣時間:2021/02/25 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳泓孝
研究生(外文):Hung-Hsuao Chen
論文名稱:腸病毒 71 型感染活化細胞表面的鈣離子通道且有助於病毒的晚期複製
論文名稱(外文):Activation of the Cell Surface Calcium Channel by an Enterovirus 71 Infection Contributes to the Late Stage of Viral Replication
指導教授:龔思豪
指導教授(外文):Szu-Hao Kung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:76
中文關鍵詞:腸病毒71型鈣離子
外文關鍵詞:EV71Calcium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
感染腸病毒或表現腸病毒的 2B 蛋白會對細胞內鈣離子平衡造成劇烈變化。這包括減少內質網的鈣離子儲存量及活化細胞外鈣離子流入細胞質,最終使細胞質鈣離子濃度提升。細胞質鈣離子提升對病毒的複製格外重要,但鈣離子流入細胞質與病毒的複製機制的關係目前了解的很少。腸病毒 71 型的 2B 蛋白是一個鑲嵌在內質網的病毒穿孔蛋白質,它能消耗內質網的鈣離子並提升細胞質鈣離子濃度。本文中我們假設感染腸病毒 71 型或表現其 2B 蛋白能藉由消耗內質網鈣離子濃度來活化內質網鈣離子的感應蛋白(STIM1),使 STIM1 蛋白與細胞膜上的ORAI1 蛋白結合以活化 ORAI1 通道,促使細胞外鈣離子流入細胞內。我們實驗證明感染腸病毒 71 型及表現其 2B 蛋白所誘導的細胞質鈣離子提升會被細胞內及細胞外鈣離子螯合劑所抑制。降低 STIM1 與 ORAI1 mRNA 的表現能降低細胞質鈣離子濃度並明顯抑制腸病毒 71 型複製晚期的蛋白與上清液的病毒效價,表示STIM1/ORAI1 在腸病毒 71 型的生命週期扮演著重要角色。藥物抑制 STIM1與 ORAI1 結合減少腸病毒 71 型所誘導的細胞質鈣離子提升和上清液的病毒效價。此外,我們建立並使用一個穩定表現 GFP-STIM1 蛋白的細胞株,去評估感染腸病毒 71 型後是否誘導 STIM1 活化(形成 puncta)。我們發現被腸病毒 71 型感染的細胞當中,位於內質網中的 STIM1 蛋白會持續活化並與細胞膜上的 ORAI1通道共位化。這些結果證實腸病毒 71 型誘導細胞質鈣離子提升及晚期的複製作用至少部分是靠 STIM1-ORAI1 的機制達成。此外,STIM1 和 ORAI1 可當作一個以宿主為導向的廣效型治療的靶的,用於治療腸病毒及與腸病毒複製機制類似的其他病毒。
Enterovirus (EV) infection or its 2B protein expression induces dramatic changes in cellular calcium homeostasis. These include decreased endothelium reticulum (ER) Ca2+ stores and activation of extracellular Ca2+ influx, ultimately causing an elevation in cytoplasmic Ca2+. Elevated cytoplasmic Ca2+ is absolutely required for virus replication, but the underlying mechanisms responsible for Ca2+ influx remain poorly understood. EV71 2B is an ER-localized viroporin, whose activity depletes ER calcium, which leads to Ca2+ influx. Herein, we exposed the possibility that EV71 infection or its 2B expression causes depletion of ER calcium through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1), subsequently activate Orai1, a plasma membrane Ca2+ channel that opens for extracellular Ca2+ entry. It was supported by our finding that EV71 infection- or viral 2B expression-induced cytoplasmic Ca2+ increase was reduced significantly by intracellular or extracellular Ca2+ chelator. Knockdown of STIM1 or Orai1 significantly reduced the virus-induced cytoplasmic Ca2+ as well as EV71 protein and viral titers at late stage of virus replication, indicating STIM1-Orai1 plays a critical role in virus replication. Treatments with pharmacological inhibitors of STIM1-Orai1 interaction also reduced the virus-induced Ca2+ increase and the viral titers in the supernatants. In addition, we established and used a stable green fluorescent protein-expressing STIM1 cell line as a biosensor to assess STIM1 activation (puncta formation) by EV71 infections. We found that STIM1 otherwise is localized in ER is constitutively active and colocalize with the Orai1 at plasma membrane in EV71infected cells. These data demonstrate that EV71- induced Ca2+ influx is at least partly mediated by STIM1-Orai1 machinery, which is required for the late stage of EV71 replication. Moreover, STIM1 and Orai1 may serve as novel targets for broad-spectrum host-directed therapeutics against infections of EVs as a group, and potentially other viruses that replicate via similar mechanisms.
摘要 1
Abstract 2
目錄 3
第一章 緒論 5
第一節 腸病毒的介紹 5
第二節 腸病毒71型 9
第三節 病毒與鈣離子的關係 10
第四節 Viroporin與腸病毒2B蛋白 11
第五節 三磷酸肌醇受體(IP3 receptor, IP3R)通道 12
第六節 鈣池調控的鈣離子通道 (Store-operated Ca2+ entry, SOCE) 的介紹、作用機制與病毒的關係 13
第七節 研究動機與方向 16
第二章 材料與方法 17
第一節 實驗材料 17
第二節 實驗方法 26
第三章 實驗結果 40
第一節 腸病毒71型感染細胞後其細胞質鈣離子隨時間變化 40
第二節 腸病毒71型的2B蛋白能使細胞質鈣離子上升,且提升的鈣離子可被細胞內鈣離子螯合劑 (BAPTA-AM) 及細胞外鈣離子螯合劑 (EGTA) 所抑制 41
第三節 降低STIM1、ORAI1 mRNA表現量能阻斷EV71誘導的細胞質鈣離子濃度上升 42
第四節 降低STIM1、ORAI1 mRNA表現量能在第12小時抑制腸病毒71型的基因體複製 43
第五節 降低STIM1、ORAI1 mRNA表現量能抑制腸病毒71型的釋放作用 44
第六節 使用ORAI1通道抑制劑SKF96365 、Synta66及AnCoA4能阻斷腸病毒71型誘導細胞質鈣離子提升 45
第七節 使用ORAI1通道抑制劑SKF96365及AnCoA4能在第6小時抑制腸病毒71型的基因體複製,Synta66則對腸病毒71型的基因體複製沒有抑制效果。 46
第八節 使用ORAI1通道抑制劑SKF96365 、Synta66及AnCoA4能明顯抑制腸病毒71型的釋放作用 47
第九節 感染腸病毒71型會造成STIM1蛋白進行聚集化作用形成puncta 48
第十節 感染腸病毒71型會造成STIM1蛋白與ORAI1蛋白結合以活化ORAI1通道 49
第四章 討論 50
第五章 圖表 53
第六章 參考文獻 63
第七章 附錄 69
1. Lashkevich, V.A., [100 years of studying poliomyelitis virus and nonpoliomyelitis enteroviruses]. Vopr Virusol, 2008. 53(4): p. 41-4.
2. Lu, C.Y., et al., Incidence and case-fatality rates resulting from the 1998 enterovirus 71 outbreak in Taiwan. J Med Virol, 2002. 67(2): p. 217-23.
3. Schmidt, N.J., E.H. Lennette, and H.H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 1974. 129(3): p. 304-9.
4. Rotbart, H.A., Treatment of picornavirus infections. Antiviral Res, 2002. 53(2): p. 83-98.
5. De Palma, A.M., et al., Selective inhibitors of picornavirus replication. Med Res Rev, 2008. 28(6): p. 823-84.
6. Bedard, K.M. and B.L. Semler, Regulation of picornavirus gene expression. Microbes Infect, 2004. 6(7): p. 702-13.
7. Strebel, K. and E. Beck, A second protease of foot-and-mouth disease virus. J Virol, 1986. 58(3): p. 893-9.
8. Svitkin, Y.V., et al., Encephalomyocarditis virus-specific polypeptide p22 possessing a proteolytic activity: preliminary mapping on the viral genome. FEBS Lett, 1979. 108(1): p. 6-9.
9. Toyoda, H., et al., A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell, 1986. 45(5): p. 761-70.
10. Aldabe, R., A. Barco, and L. Carrasco, Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem, 1996. 271(38): p. 23134-7.
11. de Jong, A.S., et al., Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem, 2003. 278(2): p. 1012-21.
12. van Kuppeveld, F.J., et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J, 1997. 16(12): p. 3519-32.
13. De Jesus, N.H., Epidemics to eradication: the modern history of poliomyelitis. Virol J, 2007. 4: p. 70.
14. Choe, S.S., D.A. Dodd, and K. Kirkegaard, Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology, 2005. 337(1): p. 18-29.
15. Paul, A.V., et al., Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature, 1998. 393(6682): p. 280-4.
16. Hellen, C.U. and P. Sarnow, Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev, 2001. 15(13): p. 1593-612.
17. Svitkin, Y.V., et al., Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. J Virol, 1994. 68(3): p. 1544-50.
18. Thompson, S.R. and P. Sarnow, Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology, 2003. 315(1): p. 259-66.
19. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5.
20. Shingler, K.L., et al., The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog, 2013. 9(3): p. e1003240.
21. Bible, J.M., et al., Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol, 2007. 17(6): p. 371-9.
22. Alexander, J.P., Jr., et al., Enterovirus 71 infections and neurologic disease--United States, 1977-1991. J Infect Dis, 1994. 169(4): p. 905-8.
23. Nagy, G., et al., Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol, 1982. 71(3): p. 217-27.
24. Chumakov, M., et al., Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol, 1979. 60(3-4): p. 329-40.
25. Shimizu, H., et al., Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997-1998. Jpn J Infect Dis, 1999. 52(1): p. 12-5.
26. Ishimaru, Y., et al., Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Arch Dis Child, 1980. 55(8): p. 583-8.
27. Gilbert, G.L., et al., Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr Infect Dis J, 1988. 7(7): p. 484-8.
28. da Silva, E.E., M.T. Winkler, and M.A. Pallansch, Role of enterovirus 71 in acute flaccid paralysis after the eradication of poliovirus in Brazil. Emerg Infect Dis, 1996. 2(3): p. 231-3.
29. Lum, L.C., et al., Neurogenic pulmonary oedema and enterovirus 71 encephalomyelitis. Lancet, 1998. 352(9137): p. 1391.
30. Samuda, G.M., et al., Monoplegia caused by Enterovirus 71: an outbreak in Hong Kong. Pediatr Infect Dis J, 1987. 6(2): p. 206-8.
31. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35.
32. Chen, S.C., et al., An eight-year study of epidemiologic features of enterovirus 71 infection in Taiwan. Am J Trop Med Hyg, 2007. 77(1): p. 188-91.
33. Shimizu, H., et al., Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr Int, 2004. 46(2): p. 231-5.
34. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3.
35. Chang, L.Y., Y.C. Huang, and T.Y. Lin, Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet, 1998. 352(9125): p. 367-8.
36. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
37. Ruiz, M.C., J. Cohen, and F. Michelangeli, Role of Ca2+in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium, 2000. 28(3): p. 137-49.
38. Choi, Y., et al., Calcium ions affect the hepatitis B virus core assembly. Virology, 2005. 332(1): p. 454-63.
39. Brisac, C., et al., Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J Virol, 2010. 84(23): p. 12226-35.
40. Campanella, M., et al., The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem, 2004. 279(18): p. 18440-50.
41. de Jong, A.S., et al., Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J Virol, 2008. 82(7): p. 3782-90.
42. Sze, C.W. and Y.J. Tan, Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses, 2015. 7(6): p. 3261-84.
43. Eisfeld, A.J., G. Neumann, and Y. Kawaoka, At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol, 2015. 13(1): p. 28-41.
44. Jalily, P.H., et al., Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride. Mol Pharmacol, 2016. 90(2): p. 80-95.
45. Steinmann, E. and T. Pietschmann, Hepatitis C virus p7-a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses, 2010. 2(9): p. 2078-95.
46. Boson, B., et al., A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog, 2011. 7(7): p. e1002144.
47. Patargias, G., et al., Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses. Mol Membr Biol, 2009. 26(5): p. 309-20.
48. Madan, V., et al., A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets mitochondria. Biochim Biophys Acta, 2010. 1798(1): p. 52-8.
49. van der Linden, L., K.C. Wolthers, and F.J. van Kuppeveld, Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, 2015. 7(8): p. 4529-62.
50. Ao, D., S.Q. Sun, and H.C. Guo, Topology and biological function of enterovirus non-structural protein 2B as a member of the viroporin family. Vet Res, 2014. 45: p. 87.
51. Nieva, J.L., et al., Mechanisms of membrane permeabilization by picornavirus 2B viroporin. FEBS Lett, 2003. 552(1): p. 68-73.
52. Martinez-Gil, L., et al., Membrane integration of poliovirus 2B viroporin. J Virol, 2011. 85(21): p. 11315-24.
53. van Kuppeveld, F.J., et al., Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis. J Virol, 1995. 69(12): p. 7782-90.
54. Wu, H., et al., Protein 2B of Coxsackievirus B3 Induces Autophagy Relying on Its Transmembrane Hydrophobic Sequences. Viruses, 2016. 8(5).
55. Egorova, P.A. and I.B. Bezprozvanny, Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J, 2017.
56. Mikoshiba, K., IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem, 2007. 102(5): p. 1426-46.
57. Xia, W., et al., Involvement of endoplasmic reticulum in hepatitis B virus replication. Virus Res, 2006. 121(2): p. 116-21.
58. Ehrlich, L.S., et al., Tsg101 regulates PI(4,5)P2/Ca(2+) signaling for HIV-1 Gag assembly. Front Microbiol, 2014. 5: p. 234.
59. Cheshenko, N., et al., Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol, 2003. 163(2): p. 283-93.
60. Salido, G.M., S.O. Sage, and J.A. Rosado, Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal, 2009. 21(4): p. 457-61.
61. Varnai, P., L. Hunyady, and T. Balla, STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci, 2009. 30(3): p. 118-28.
62. Zhang, W. and M. Trebak, STIM1 and Orai1: novel targets for vascular diseases? Sci China Life Sci, 2011. 54(8): p. 780-5.
63. Kuang, C.Y., et al., Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun, 2010. 398(2): p. 315-20.
64. Hoth, M. and B.A. Niemeyer, The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr, 2013. 71: p. 237-71.
65. Shen, W.W. and N. Demaurex, Morphological and functional aspects of STIM1-dependent assembly and disassembly of store-operated calcium entry complexes. Biochem Soc Trans, 2012. 40(1): p. 112-8.
66. Boncompagni, S., et al., Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep, 2017. 7(1): p. 14286.
67. Li, X., et al., Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers. Nat Commun, 2017. 8(1): p. 1042.
68. Yuan, J.P., et al., STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol, 2007. 9(6): p. 636-45.
69. Hyser, J.M., et al., Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol, 2013. 87(24): p. 13579-88.
70. Han, Z., et al., Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathog, 2015. 11(10): p. e1005220.
71. van Kruchten, R., et al., Antithrombotic potential of blockers of store-operated calcium channels in platelets. Arterioscler Thromb Vasc Biol, 2012. 32(7): p. 1717-23.
72. Sadaghiani, A.M., et al., Identification of Orai1 channel inhibitors by using minimal functional domains to screen small molecule microarrays. Chem Biol, 2014. 21(10): p. 1278-1292.
73. Chen, Y.F., et al., Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A, 2011. 108(37): p. 15225-30.
74. Yang, B. and M.J. Bouchard, The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol, 2012. 86(1): p. 313-27.
75. Dellis, O., et al., Epstein-Barr virus latent membrane protein 1 increases calcium influx through store-operated channels in B lymphoid cells. J Biol Chem, 2011. 286(21): p. 18583-92.
76. Cheng, K.T., et al., Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. Adv Exp Med Biol, 2011. 704: p. 435-49.
77. Liu, B., et al., Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation. Respir Res, 2010. 11: p. 168.
78. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90.
79. Lin, J.Y., et al., Viral and host proteins involved in picornavirus life cycle. J Biomed Sci, 2009. 16: p. 103.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔