跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.218) 您好!臺灣時間:2024/11/07 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許賀鈞
研究生(外文):HSU, HO-CHUN
論文名稱:多孔性二氧化鈦聚集體奈米複合光電極薄膜應用於染料敏化太陽能電池
論文名稱(外文):Porous Deformed TiO2 Aggregate Nanocomposite Film as Photoanode Applied in Dye Sensitized Solar Cells
指導教授:周學韜
指導教授(外文):CHOU, HSUEH-TAO
口試委員:周學韜周榮泉許佳振莊賦祥吳松茂李榮和
口試委員(外文):CHOU, HSUEH-TAOCHOU, JUNG-CHUANHSU, CHIA-CHENJUANG, FUH-SHYANGWU,SUNG-MAOLEE, RONG-HO
口試日期:2018-05-29
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:186
中文關鍵詞:染料敏化太陽能電池氧化鋅奈米柱金奈米粒子變形二氧化鈦聚集體
外文關鍵詞:Dye-sensitized Solar Cells(DSSCs)ZnO Nanorods Arrays (ZnO NRs)Au Nanoparticles (AuNPs)Deformed TiO2 Aggregates (DTA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在典型染料敏化太陽能電池(DSSCs)中,多孔奈米晶二氧化鈦光電極對於大量染料吸附和電子傳輸扮演著重要的角色。然而,DSSCs的光電轉換效率受限於多孔奈米晶二氧化鈦光電極中的載子復合和來自於部分的入射光的光捕獲。因此,我們提出了氧化鋅奈米柱/二氧化鈦奈米粒子(ZnO NRs / TiO2 NPs)和變形二氧化鈦聚集體/金奈米粒子(DTA / AuNPs)複合薄膜作為光電極,是根據ZnO的良好電子親和力,具有高比表面積與光散射的DTA以及等具有電漿子特性的AuNPs的蕭特基能障效應。本研究以ZnO NRs/TiO2 NPs及DTA/AuNPs奈米複合薄膜應用於染料敏化太陽能電池光電極,其複合光電極薄膜分別以掃描式電子顯微鏡 (SEM)、穿透式電子顯微鏡 (TEM)、X光繞射儀 (XRD)、紫外線可見光光譜儀與比表面積與孔隙率分析儀進行各種基本材料特性分析,再以太陽能電池光電轉換效率量測系統與電化學阻抗分析儀量測ZnO NRs/TiO2 NPs與DTA/AuNPs染料敏化太陽能電池特性與電化學阻抗特性。ZnO NRs/TiO2 NPs成長於熱處理550 ̊C晶種層之染料敏化太陽能電池有最高的光電轉換效率(0.19%)與填充因子(44%)。另一方面,最佳化DTA/AuNPs光電極薄膜之染料敏化太陽能電池特性,閉迴路電流密度是7.58 mA/cm2、開迴路電壓是0.78V、填充因子是59.31,光電轉換效率是3.06%。 其造成的原因為在DTA/AuNPs光電極中具有充足的比表面積提供大量的染料吸附,以及較長的電子生命週期。
In typical dye-sensitized solar cells (DSSCs), a porous nanocrystalline TiO2 photoanode plays the important role for mass dye-loading and electrons transport. However, the power conversion efficiency of DSSCs is limited by that the charge recombination during the electron transport in the porous nanocrystalline TiO2 photoanode and partial light harvesting from incident light. Therefore, we propose the ZnO nanorods arrays/TiO2 nanoparticles (ZnO NRs/TiO2 NPs) and deformed TiO2 aggregates/Au nanoparticles (DTA/AuNPs) composite films as the photoanode, according to the good electron affinity of ZnO NRs, the high specific surface area, light scattering of DTA and the Schottky barrier effect of plasmonic AuNPs. In this study, the features of ZnO NRs/TiO2 NPs and DTA/AuNPs composite films have been demonstrated by using scanning electron microscope (SEM), transmission electron microscope (TEM), x-ray diffractometer (XRD), UV-Visible spectrophotometer, and specific surface area/pore size distribution analyzer. The photovoltaic performances and electrochemical impedances of DSSCs with ZnO NRs/TiO2 NPs and DTA/AuNPs photoanodes are also investigated by using the solar cell measurement system with a solar simulator and the electrochemical impedances spectroscopy. The photovoltaic performances of DSSCs with ZnO NRs/TiO2 NPs photoanode annealed at 550˚C has the best fill-factor of 44 and power conversion efficiency of 0.19%. The DSSCs with DTA/AuNPs based photoanode exhibit a high Jsc of 7.58 mA/cm2, a Voc of 0.78V, a fill-factor of 59.31 and a power conversion efficiency of 3.06%, which suggests that the enhancement of short-circuit current density and power conversion efficiency would be contributed by sufficient specific surface area for dye loading and the long electron lifetime in the photoanode film.
摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1-1 Energy Consumption and Solar Energy 1
1-2 Developments of Solar Cell Techniques 2
1-3 Dye-sensitized Solar Cells (DSSCs) 5
1-4 Motive and Objective of Research 6
1-5 Framework of the Thesis 6
1-6 Structure of Research 7
Chapter 2 Literatures Review 9
2-1 Developments and Importance of DSSCs 9
2-1-1 Structure and Principle of DSSCs 9
2-1-2 The First Laboratory Dye-sensitized Solar Cell (DSSC) 10
2-1-3 Situation and Predicament of DSSCs 11
2-1-3-1 Panchromatic Sensitizers 11
2-1-3-2 Developments of Mesoporous Oxide Films 13
2-1-3-3 Stability of Photovoltaic Performance 15
2-2 Fabrications and Applications of Various Photoanodes 16
2-2-1 Nanocrystalline TiO2 Photoanodes 18
2-2-1-1 Mesoporous Nanocrystalline TiO2 Photoanode Applied in DSSCs 22
2-2-1-2 TiO2 Nanoparticles/TiO2 Nanorods Photoanode Applied in DSSCs 24
2-2-1-3 Porous Aggregated TiO2 Sphere Photoanode Applied in DSSCs 25
2-2-2 ZnO Photoanodes 26
2-2-2-1 Effect of ZnO Nanorods Array Synthesis Time on Dye-sensitized Solar Cells 28
2-2-3 Nanocomposite Materials and Structures Applied in DSSCs 31
2-2-4 Other Functional Films Applied in Photoanodes of DSSCs 33
2-2-4-1 TiO2 and ZnO Compact Films Applied in DSSCs 33
2-2-4-2 Optical Scattering Films Applied in DSSCs 35
2-2-5 Plasmonic AuNPs Composite Photoanodes Applied in DSSCs 36
2-2-5-1 Principle and Mechanism of Localized Surface Plasmon Resonance (LSPR) 36
2-2-5-2 AuNPs Nanocomposite Films as Photoanodes 39
2-2-5-3 Preparation of Self-assembled Gold Nanoparticles Thin Film as a Photoanode for Dye-sensitized Solar Cells 41
2-2-6 Deformed TiO2 Aggregate Nanocomposite Photoanodes Applied in DSSC 44
2-2-6-1 Investigation of Deformed TiO2 Aggregates Doped TiO2 Nanoparticles Photoanodes Applied for Dye-Sensitized Solar Cells 45
2-3 Literatures Review of Counter-electrodes (CE) 47
2-3-1 Carbon Based Counter-electrodes 49
2-3-1-1 Dye-sensitized Solar Cells with Carbon Based Counter-electrodes Deposited by Spray Coating Method 50
2-4 Literatures Review of Electrolyte 52
Chapter 3 Methods and Apparatus 54
3-1 Design of Experimental Processes and Parameters 54
3-1-1 ZnO Nanorods Array/TiO2 Nanoparticles Nanocomposite Photoanodes Applied for DSSCs 54
3-1-1-1 Effect of Annealing Temperatures to Prepare ZnO Seeds Layer on ZnO Nanorods Array/TiO2 Nanoparticles 55
3-1-2 Deformed TiO2 Aggregate/Au Nanoparticles Nanocomposite Photoanodes Applied for DSSCs 58
3-1-2-1 Effect of Au Nanoparticles/deformed TiO2 Aggregated Photoanode for DSSCs 58
3-2 Fabrication Processes and Equipment 59
3-2-1 Materials and Synthesis Methods 60
3-2-1-1 Materials 60
3-2-2 Equipment and Parameters 62
3-2-2-1 Glass Cutting Machine 62
3-2-2-2 Ultrasonic Cleaner 64
3-2-2-3 Forced Convection Oven 64
3-2-2-4 Stirring Hot Plate 65
3-2-2-5 Spin Coater 65
3-2-2-6 Spray Coater 66
3-2-2-7 RF Sputtering Coater 68
3-2-2-8 LED Ultraviolet Light Source 69
3-2-2-9 Programmable Controller Furnace 69
3-2-2-10 Centrifuge 70
3-2-3 Fabrication Processes of DSSCs 71
3-3-1-1 Preparation of TCO Coated Glass Substrates 72
3-3-1-2 Preparation of TiO2 Colloid 72
3-3-1-3 Preparation of Standard Liquid Electrolyte 72
3-3-1-4 Preparation of Sensitized Photoanode by Dye Solution 72
3-3-1-5 Preparation of Standard Platinum Coated Counter-electrode 73
3-3-1-6 Deposition of Photoanode with Various Coating Methods 73
3-3-1-7 Assembly of DSSCs 74
3-3-1-8 Preparation of ZnO Seeded TCO Glass by Using a ZnO Seeds Solution 74
3-3-1-9 Preparation of ZnO Nanorods Array Growing Solution for Chemical Bath Method 75
3-3-1-10 Fabrication of ZnO NRs/TiO2 NPs Composite Photoanodes 75
3-3-1-11 Preparation of AuNPs Solution 76
3-3-1-12 Preparation of DTA Powder by Using Hydrothermal Method 77
3-3-1-13 Fabrication of DTA/AuNPs Composite Photoanodes 77
3-3 Measurements and Analysis Methods 78
3-3-1 Solar Cell Measurement System 78
3-3-1-1 Features of Solar Simulator (San-Ei XES-50) 78
3-3-1-2 Features of Source Meter (Keithley 2400) 79
3-3-1-3 Photovoltaic Performances of Solar Cells 80
3-3-2 Electrochemical Workstation (Biologic SP-150) 81
3-3-2-1 Basics of Electrochemical Impedance Spectroscopy 82
3-3-2-2 Physical Electrochemistry and Equivalent Circuit Elements 85
3-3-3 Specific Surface Area Pore Size Distribution Analyzer (BET-201A) 86
3-3-3-1 BET Method 88
3-3-4 UV-visible Spectrophotometer (Jasco V-650) 90
3-3-5 Surface Profiler (Bruker Dektak) 91
3-3-6 Scanning Electron Microscope (SEM, JEOL JSM-6701F) 92
3-3-7 Transmission Electron Microscope (TEM, JEOL JEM-2010) 93
3-3-8 Energy-dispersive X-ray Spectroscopy (EDS, Bruker) 94
3-3-9 X-ray Diffraction (XRD, Rigaku D/MAX2500) 95
3-3-10 pH Meter 97
Chapter 4 Results and Discussion 98
4-1 ZnO Nanorods Array/TiO2 Nanoparticles Nanocomposite Photoanodes Applied in DSSCs 98
4-1-1 Effect of Annealing Temperatures to Prepare ZnO Seeds Layer on ZnO Nanorods Array/TiO2 Nanoparticles 98
4-1-1-1 Material Properties of ZnO Seeds Layers with Various Annealing Temperatures 99
4-1-1-2 Material Properties of ZnO Nanorods Arrays Grown on ZnO Seeds Layers with Various Annealing Temperatures 101
4-1-1-3 Solar Cell Performances of ZnO Nanorods Arrays/TiO2 Nanoparticles Photoanode 103
4-1-1-4 Electrochemical Impedance Spectra of ZnO Nanorods Array/TiO2 Nanoparticles Films 106
4-1-1-5 Comparisons of ZnO Nanorods Array Based Photoanode with Other Literatures 109
4-1-2 Summary 110
4-2 DTA/AuNPs Composite Photoanodes Applied in DSSCs 111
4-2-1 Preliminary Investigation of DTA/AuNPs Photoanodes for DSSCs 111
4-2-1-1 Material Properties of DTA and AuNPs 112
4-2-1-2 Photovoltaic Performances of DSSCs with DTA/AuNPs Photoanodes 112
4-2-1-3 Electrochemical Impedance Spectroscopy (EIS) Analyses of Various Photoanodes 114
4-2-1-4 Summary 115
4-2-2 Effect of Au Nanoparticle in Deformed TiO2 Aggregates/Au Nanoparticles Photoanode Applied for DSSCs 116
4-2-2-1 Structure and Morphology of AuNPs and DTA 116
4-2-2-2 BET and BJH Analysis of Various TiO2 Films 118
4-2-2-3 Dye Loading Analysis of Various TiO2 Films 120
4-2-2-4 Photovoltaic Performances of Dye Sensitized Solar Cells with Various Photoanodes 121
4-2-2-5 Electrochemical Impedance Spectroscopy (EIS) Analyses of Various Photoanodes 123
4-2-2-6 Effects of DTA/AuNPs Nanostructure in Photoanodes for DSSCs 124
4-2-3 Summary 126
4-3 Comparisons of DSSCs with Various Photoanodes 127
4-3-1 ZnO Nanostructures Photoanodes Applied for DSSCs 127
4-3-2 TiO2 Nanocomposite Photoanode Applied in DSSCs 130
Chapter 5 Conclusions 135
Chapter 6 Future Works 137
References 138
Appendices 147
博士班口試周榮泉教授委員問答集 147
博士班口試許佳振教授委員問答集 154
博士班口試李榮和教授委員問答集 158
博士班口試莊賦祥教授委員問答集 164
博士班口試吳松茂教授委員問答集 169
[1]K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, and H. Fayaz, "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp. 2149-2163, May, 2011.
[2]Z. Qifeng, D. C. S., Z. Xiaoyuan, and C. Guozhong, "ZnO nanostructures for dye‐sensitized solar cells," Advanced Materials, vol. 21, no. 41, pp. 4087-4108, November, 2009.
[3]B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, p. 737, October, 1991.
[4]M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, p. 338, November, 2001.
[5]M. Grätzel, "Photovoltaic and photoelectrochemical conversion of solar energy," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 10.1098/rsta.2006.1963 vol. 365, no. 1853, p. 993, April, 2007.
[6]G. Michael, "The advent of mesoscopic injection solar cells," Progress in Photovoltaics: Research and Applications, vol. 14, no. 5, pp. 429-442, February, 2006.
[7]M. Grätzel, "Mesoporous oxide junctions and nanostructured solar cells," Current Opinion in Colloid & Interface Science, vol. 4, no. 4, pp. 314-321, August, 1999.
[8]H. T. Chou, H. C. Hsu, P. C. Li, K. C. Tseng, C. T. Sung, and W. H. Huang, "Effect of Au nanoparticles/deformed TiO2 aggregated photoanode with various amounts of Au nanoparticles for dye sensitized solar cells," in 2017 International Conference on Applied System Innovation (ICASI), pp. 420-423, 2017.
[9]G. Michael, "Perspectives for dye‐sensitized nanocrystalline solar cells," Progress in Photovoltaics: Research and Applications, vol. 8, no. 1, pp. 171-185, February, 2000.
[10]M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 3-14, June, 2004.
[11]M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, October, 2003.
[12]D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," The Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2053-2059, February, 2000.
[13]M. Grätzel, "Perspectives for dye‐sensitized nanocrystalline solar cells," Progress in Photovoltaics: Research and Applications, vol. 8, no. 1, pp. 171-185, February, 2000.
[14]M. Grätzel, "The magic world of nanocrystals, from batteries to solar cells," Current Applied Physics, vol. 6, pp. e2-e7, August, 2006.
[15]C. C. Raj and R. Prasanth, "A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells," Journal of Power Sources, vol. 317, pp. 120-132, June, 2016.
[16]D. A. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," Journal of Materials Science, vol. 46, no. 4, pp. 855-874, February, 2011.
[17]Y. Lee, J. Chae, and M. Kang, "Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol–gel and solvothermal methods," Journal of Industrial and Engineering Chemistry, vol. 16, no. 4, pp. 609-614, July, 2010.
[18]S. Ngamsinlapasathian, S. Pavasupree, Y. Suzuki, and S. Yoshikawa, "Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method," Solar Energy Materials and Solar Cells, vol. 90, no. 18, pp. 3187-3192, November, 2006.
[19]C.-Y. Huang, Y.-C. Hsu, J.-G. Chen, V. Suryanarayanan, K.-M. Lee, and K.-C. Ho, "The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell," Solar Energy Materials and Solar Cells, vol. 90, no. 15, pp. 2391-2397, September, 2006.
[20]Chunfeng Lao, Yutao Chuai, Li Su, Xiao Liu, Lan Huang, Humin Cheng, Dechun Zou, "Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell," Solar Energy Materials and Solar Cells, vol. 85, no. 3, pp. 457-465, January, 2005.
[21]J.-H. Yoon, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim, "TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 180, no. 1, pp. 184-188, May, 2006.
[22]Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, and M. Huang, "The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells," Electrochimica Acta, vol. 55, no. 15, pp. 4573-4578, June, 2010.
[23]Supachai Ngamsinlapasathian, Singto Sakulkhaemaruethai, Sorapong Pavasupree, Athapol Kitiyanan, Thammanoon Sreethawong, Yoshikazu Suzuki, Susumu Yoshikawa, "Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 145-151, June, 2004.
[24]M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, "Formation of titania nanotubes and applications for dye-sensitized solar cells," Journal of The Electrochemical Society, vol. 150, no. 8, pp. G488-G493, June, 2003.
[25]X.D. Li, D.W. Zhang, S. Chen, Z.A. Wang, Z. Sun, X.J. Yin, S.M. Huang, "Enhancing efficiency of dye-sensitized solar cells by combining use of TiO2 nanotubes and nanoparticles," Materials Chemistry and Physics, vol. 124, no. 1, pp. 179-183, November, 2010.
[26]C. S. Lee, J. Y. Lim, W. S. Chi, and J. H. Kim, "Facile, nonhydrothermal, mass-producible synthesis of mesoporous TiO2 spheres for dye-sensitized solar cells," Electrochimica Acta, vol. 173, pp. 139-147, August, 2015.
[27]H. Wang and Z. Guo, "Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells," Materials Research Bulletin, vol. 70, pp. 928-934, October, 2015.
[28]H.-G. Jung, Y. S. Kang, and Y.-K. Sun, "Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells," Electrochimica Acta, vol. 55, no. 15, pp. 4637-4641, June, 2010.
[29]S. Sönmezoğlu, V. Eskizeybek, A. Toumiat, and A. Avcı, "Fast production of ZnO nanorods by arc discharge in de-ionized water and applications in dye-sensitized solar cells," Journal of Alloys and Compounds, vol. 586, pp. 593-599, February, 2014.
[30]A. Al-Kahlout, "Thermal treatment optimization of ZnO nanoparticles-photoelectrodes for high photovoltaic performance of dye-sensitized solar cells," Journal of the Association of Arab Universities for Basic and Applied Sciences, vol. 17, pp. 66-72, April, 2015.
[31]G. Zamiri and S. Bagheri, "Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and graphene quantum dots as a photo-sensitizer," Journal of Colloid and Interface Science, vol. 511, pp. 318-324, February, 2018.
[32]A. M. Golsheikh, K. Z. Kamali, N. M. Huang, and A. K. Zak, "Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells," Powder Technology, vol. 329, pp. 282-287, April, 2018.
[33]P. P. Das, S. Mukhopadhyay, S. A. Agarkar, A. Jana, and P. S. Devi, "Photochemical performance of ZnO nanostructures in dye sensitized solar cells," Solid State Sciences, vol. 48, pp. 237-243, October, 2015.
[34]Q. Huang, L. Fang, X. Chen, and M. Saleem, "Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells," Journal of Alloys and Compounds, vol. 509, no. 39, pp. 9456-9459, September, 2011.
[35]Y. Jo, Y. J. Yun, M. Alam Khan, and Y. Jun, "Densely packed setose ZnO nanorod arrays for dye sensitized solar cells," Synthetic Metals, vol. 198, pp. 137-141, December, 2014.
[36]H. Lu, X. Zhai, W. Liu, M. Zhang, and M. Guo, "Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell," Thin Solid Films, vol. 586, pp. 46-53, July, 2015.
[37]J. Chung, J. Lee, and S. Lim, "Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency," Physica B: Condensed Matter, vol. 405, no. 11, pp. 2593-2598, June, 2010.
[38]B. Y. Chen, H. T. Chou, and H. C. Hsu, "Effect of ZnO nanowire synthesis time on dye-sensitized solar cells," in 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pp. 1188-1191, January, 2013.
[39]H.-T. Chou and H.-C. Hsu, "The effect of annealing temperatures to prepare ZnO seeds layer on ZnO nanorods array/TiO2 nanoparticles photoanode," Solid-State Electronics, vol. 116, pp. 15-21, February, 2016.
[40]L.-Y. Lin, M.-H. Yeh, C.-P. Lee, C.-Y. Chou, R. Vittal, and K.-C. Ho, "Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles," Electrochimica Acta, vol. 62, pp. 341-347, February, 2012.
[41]H. Servane, S. Takashi, L. Daniel, and Y. Tsukasa, "Design of a hierarchical structure of ZnO by electrochemistry for ZnO‐based dye‐sensitized solar cells," Physica Status Solidi (a), vol. 207, no. 10, pp. 2252-2257, July, 2010.
[42]J. B. Baxter and E. S. Aydil, "Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires," Solar Energy Materials and Solar Cells, vol. 90, no. 5, pp. 607-622, March, 2006.
[43]C.-H. Chao, C.-L. Chang, C.-H. Chan, S.-Y. Lien, K.-W. Weng, and K.-S. Yao, "Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells," Thin Solid Films, vol. 518, no. 24, pp. 7209-7212, October, 2010.
[44]Michele Manca, Francesco Malara, Luigi Martiradonna, Luisa De Marco, Roberto Giannuzzi, Roberto Cingolani, Giuseppe Gigli, "Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photoelectrode," Thin Solid Films, vol. 518, no. 23, pp. 7147-7151, September, 2010.
[45]J.-A. Jeong and H.-K. Kim, "Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 344-348, January, 2011.
[46]Yumin Liu, Xiaohua Sun, Qidong Tai, Hao Hu, Bolei Chen, Niu Huang, Bobby Sebo, Xing-zhong Zhao, "Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film," Journal of Power Sources, vol. 196, no. 1, pp. 475-481, January, 2011.
[47]X. Sun, X. Zhou, Y. Xu, P. Sun, N. Huang, and Y. Sun, "Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells," Applied Surface Science, vol. 337, pp. 188-194, May 2015.
[48]Jin-Kook Lee, Bo-Hwa Jeong, Sung-il Jang, Young-Guen Kim, Yong-Wook Jang, Su-Bin Lee, Mi-Ra Kim, "Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells," Journal of Industrial and Engineering Chemistry, vol. 15, no. 5, pp. 724-729, September 2009.
[49]A. Pandikumar, S.-P. Lim, S. Jayabal, N. M. Huang, H. N. Lim, and R. Ramaraj, "Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, vol. 60, pp. 408-420, July, 2016.
[50]Michael D. Brown, Teeraporn Suteewong, R. Sai Santosh Kumar, Valerio D’Innocenzo, Annamaria Petrozza, Michael M. Lee, Ulrich Wiesner, and Henry J. Snaith, "Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles," Nano Letters, vol. 11, no. 2, pp. 438-445, December, 2011.
[51]S.M. Chao, T.H. Meen, L.C. Shih, T.Y. Chang, J.K. Tsai, T.C. Wu, T.L. Wu, L.W. Ji, C.J. Huang, "Effects of gold nanoparticles inlaid in the photo-electrode on the properties of dye-sensitized solar cells," Microelectronic Engineering, vol. 148, pp. 29-33, December, 2015.
[52]H. K. Jun, M. A. Careem, and A. K. Arof, "Plasmonic effects of quantum size gold nanoparticles on dye-sensitized solar cell," Materials Today: Proceedings, vol. 3, pp. S73-S79, February, 2016.
[53]M. A. Al-Azawi, N. Bidin, M. Bououdina, and S. M. Mohammad, "Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance," Solar Energy, vol. 126, pp. 93-104, March, 2016.
[54]Nikhil Chander, A.F. Khana, Eshwar Thouti, Sanjay K. Sardana, P.S. Chandrasekhar, Viresh Dutta, Vamsi K. Komarala, "Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells," Solar Energy, vol. 109, pp. 11-23, November, 2014.
[55]N. Chander, P. Singh, A. F. Khan, V. Dutta, and V. K. Komarala, "Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells," Thin Solid Films, vol. 568, pp. 74-80, October, 2014.
[56]H. T. Chou, J. L. Wu, T. M. Wu, H. C. Hsu, S. H. Chen, and Y. K. Yu, "Preparation of self-assembled gold nanoparticles thin film as a photoelectrode for dye-sensitized solar cells," in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 293-296, October, 2015.
[57]H. T. Chou, K. C. Tseng, and H. C. Hsu, "Fabrication of deformed TiO2 aggregate as photoanode in dye-sensitized solar cells," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 211-216, Jan, 2016.
[58]H. T. Chou, H. C. Liu, H. C. Hsu, C. Y. Chen, and C. H. Lai, "Investigation of deformed TiO2 aggregates doped TiO2 nanoparticles photoanode applied for dye-sensitized solar cells," IEEE Journal of Photovoltaics, vol. 8, no. 3, pp. 763-768, March, 2018.
[59]T. N. Murakami and M. Grätzel, "Counter electrodes for DSC: Application of functional materials as catalysts," Inorganica Chimica Acta, vol. 361, no. 3, pp. 572-580, February, 2008.
[60]X. Fang, T. Ma, G. Guan, M. Akiyama, and E. Abe, "Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 179-182, June, 2004.
[61]L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang, and Y. Lin, "Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells," Electrochimica Acta, vol. 55, no. 11, pp. 3721-3726, April, 2010.
[62]H. T. Chou, C. H. Lien, D. H. Wu, H. C. Hsu, and M. H. Huang, "The different film thicknesses of graphite/carbon black on the counter electrodes by spray coating method for dye-sensitized solar cells," in 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pp. 1151-1154, January, 2014.
[63]Meidan Ye, Xiaoru Wen, Mengye Wang, James Iocozzia, Nan Zhang, Changjian Lin, ZhiqunLin, "Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes," Materials Today, vol. 18, no. 3, pp. 155-162, April, 2015.
[64]H.-T. Chou, H.-C. Hsu, C.-H. Lien, and S.-T. Chen, "The effect of various concentrations of PVDF-HFP polymer gel electrolyte for dye-sensitized solar cell," Microelectronics Reliability, vol. 55, no. 11, pp. 2174-2177, April, 2015.
[65]H. T. Chou, C. H. Lien, H. C. Hsu, S. T. Chen, C. T. Sung, and S. C. F. Jiang, "Characteristics and analyses of various counter electrodes applied in quasi-solid electrolyte dye-sensitized solar cells," IEEE Journal of Photovoltaics, vol. 8, no. 1, pp. 137-143, Jan, 2018.
[66]R. Katoh, N. Fuke, A. Furube, and N. Koide, "Effect of dye coverage on photo-induced electron injection efficiency in N719-sensitized nanocrystalline TiO2 films," Chemical Physics Letters, vol. 489, no. 4, pp. 202-206, April, 2010.
[67]Beibei Ma, Rui Gao, Liduo Wang, Fen Luo, Chun Zhan, Jiaoli Li, Yong Qiu, "Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell," Journal of Photochemistry and Photobiology A: Chemistry, vol. 202, no. 1, pp. 33-38, February, 2009.
[68]W. J. Lee, E. Ramasamy, and D. Y. Lee, "Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1448-1451, August, 2009.
[69]L. Wang, X. Fang, and Z. Zhang, "Design methods for large scale dye-sensitized solar modules and the progress of stability research," Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3178-3184, December, 2010.
[70]H.-C. H. Hsueh-Tao Chou, Min-Hsiung Huang, Chiu-Hui Lien and Shi-Ting Chen, "Spray coating system and dye sensitized solar cell," R.O.C. (Taiwan) Patent M549455, 2017.
[71]Diagram of Thermal Evaporation Process. Available: http://www.semicore.com/images/photos/thermal-evaporation-process.png
[72]Chang-Hai Wang, Tzu-En Hua, Chia-Chi Chien, Yen-Lu Yu, Tsung-Yeh Yang, Chi-Jen Liu, Wei-Hua Leng, Y. Hwu, Yung-Chin Yang, Chong-Cook Kim, Jung-Ho Je, Chih-Hsiung Chen, Hong-Ming Lin, G. Margaritondo, "Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction," Materials Chemistry and Physics, vol. 106, no. 2, pp. 323-329, December, 2007.
[73]Basics of Electrochemical Impedance Spectroscopy. Available: https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/
[74]Introduction to BET (Brunauer, Emmett and Teller). Available: http://particle.dk/methods-analytical-laboratory/surface-area-bet-2/
[75]S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, "Effects of post-thermal annealing on the optical constants of ZnO thin film," Journal of Alloys and Compounds, vol. 448, no. 1, pp. 21-26, January, 2008.
[76]S. Benramache and B. Benhaoua, "Influence of annealing temperature on structural and optical properties of ZnO: In thin films prepared by ultrasonic spray technique," Superlattices and Microstructures, vol. 52, no. 6, pp. 1062-1070, December, 2012.
[77]T. M. Hammad, J. K. Salem, and R. G. Harrison, "The influence of annealing temperature on the structure, morphologies and optical properties of ZnO nanoparticles," Superlattices and Microstructures, vol. 47, no. 2, pp. 335-340, February, 2010.
[78]K. Vijayalakshmi, K. Karthick, and D. Gopalakrishna, "Influence of annealing on the structural, optical and photoluminescence properties of ZnO thin films for enhanced H2 sensing application," Ceramics International, vol. 39, no. 5, pp. 4749-4756, July, 2013.
[79]R. Elilarassi and G. Chandrasekaran, "Effect of annealing on structural and optical properties of zinc oxide films," Materials Chemistry and Physics, vol. 121, no. 1, pp. 378-384, May, 2010.
[80]S.-Y. Kuo, W.-C. Chen, and C.-P. Cheng, "Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films," Superlattices and Microstructures, vol. 39, no. 1, pp. 162-170, January, 2006.
[81]J. Sengupta, R. K. Sahoo, K. K. Bardhan, and C. D. Mukherjee, "Influence of annealing temperature on the structural, topographical and optical properties of sol–gel derived ZnO thin films," Materials Letters, vol. 65, no. 17, pp. 2572-2574, September, 2011.
[82]A. Usami, S. Seki, Y. Mita, H. Kobayashi, H. Miyashiro, and N. Terada, "Temperature dependence of open-circuit voltage in dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 93, no. 6, pp. 840-842, June, 2009.
[83]R. Tang and L. Yin, "Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures," Journal of Materials Chemistry A, 10.1039/C5TA03810C vol. 3, no. 33, pp. 17417-17425, July, 2015.
[84]F. D. Nayeri, E. A. Soleimani, and F. Salehi, "Synthesis and characterization of ZnO nanowires grown on different seed layers: The application for dye-sensitized solar cells," Renewable Energy, vol. 60, pp. 246-255, December, 2013.
[85]X. Fang, Y. Li, S. Zhang, L. Bai, N. Yuan, and J. Ding, "The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells," Solar Energy, vol. 105, pp. 14-19, July, 2014.
[86]Z. Qin, G. Zhang, Q. Liao, Y. Qiu, Y. Huang, and Y. Zhang, "Influences of low temperature thermal treatment on ZnO nanowire arrays and nanoparticles based flexible dye-sensitized solar cells," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 402, pp. 127-131, May, 2012.
[87]M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, "Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells:  Studies of Charge Transport and Carrier Lifetime," The Journal of Physical Chemistry C, vol. 111, no. 2, pp. 1035-1041, December, 2007.
[88]W.-C. Chang, C.-H. Lee, W.-C. Yu, and C.-M. Lin, "Optimization of dye adsorption time and film thickness for efficient ZnO dye-sensitized solar cells with high at-rest stability," Nanoscale Research Letters, vol. 7, no. 1, pp. 688, December, 2012.
[89]Nikola Tasić, Zorica Marinković Stanojević, Zorica Branković, Uroš Lačnjevac, Vesna Ribić, Milan Žunić, Tatjana Novaković, Matejka Podlogar, Goran Branković, "Mesoporous films prepared from synthesized TiO2 nanoparticles and their application in dye-sensitized solar cells (DSSCs)," Electrochimica Acta, vol. 210, pp. 606-614, August, 2016.
[90]M. Muttakin, S. Mitra, K. Thu, K. Ito, and B. B. Saha, "Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms," International Journal of Heat and Mass Transfer, vol. 122, pp. 795-805, July, 2018.
[91]E. H. Jo, H. Chang, S. K. Kim, K. M. Roh, J. Kim, and H. D. Jang, "Pore size-controlled synthesis of PEG-derived porous TiO2 particles and photovoltaic performance of dye-sensitized solar cells," Materials Letters, vol. 131, pp. 244-247, September, 2014.
[92]H. Kim, Y. Choi, Y. Park, R. C. Pawar, Y.-H. Choa, and C. S. Lee, "Improved efficiency of dye-sensitized solar cell based on randomly ordered pore structure fabricated by dry deposition method," Current Applied Physics, vol. 17, no. 4, pp. 433-441, April, 2017.
[93]C. Dehong, H. Fuzhi, C. Yi‐Bing, and C. R. A., "Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high‐performance dye‐sensitized solar cells," Advanced Materials, vol. 21, no. 21, pp. 2206-2210, March, 2009.
[94]Liang Chu, Zhengfei Qin, Qiaoxia Zhang, Wei Chen, Jian Yang, Jianping Yang, Xingao Li, "Mesoporous anatase TiO2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells," Applied Surface Science, vol. 360, pp. 634-640, January, 2016.
[95]S. Pavasupree, J. Jitputti, S. Ngamsinlapasathian, and S. Yoshikawa, "Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders," Materials Research Bulletin, vol. 43, no. 1, pp. 149-157, January, 2008.
[96]Subas Muduli, Onkar Game, Vivek Dhas, K.Vijayamohanan, K.A.Bogle, N.Valanoor, Satishchandra B.Ogale, "TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance," Solar Energy, vol. 86, no. 5, pp. 1428-1434, May, 2012.
[97]A. A. Shah, A. A. Umar, and M. M. Salleh, "Efficient quantum capacitance enhancement in DSSC by gold nanoparticles plasmonic effect," Electrochimica Acta, vol. 195, pp. 134-142, March, 2016.
[98]Y. Ling, F. Ren, and J. Feng, "Reverse bias voltage dependent hydrogen sensing properties on Au–TiO2 nanotubes Schottky barrier diodes," International Journal of Hydrogen Energy, vol. 41, no. 18, pp. 7691-7698, May, 2016.
[99]V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, "Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid," Journal of Molecular Catalysis A: Chemical, vol. 263, no. 1, pp. 32-38, February, 2007.
[100]A. Jana, P. P. Das, S. A. Agarkar, and P. Sujatha Devi, "A comparative study on the dye sensitized solar cell performance of solution processed ZnO," Solar Energy, vol. 102, pp. 143-151, April, 2014.
[101]M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, and C. Lee, "Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications," Solar Energy, vol. 106, pp. 143-150, August, 2014.
[102]C. Sima, C. Grigoriu, O. Toma, and S. Antohe, "Study of dye sensitized solar cells based on ZnO photoelectrodes deposited by laser ablation and doctor blade methods," Thin Solid Films, vol. 597, pp. 206-211, December, 2015.
[103]M. S. H. Choudhury, N. Kishi, and T. Soga, "Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells," Journal of Alloys and Compounds, vol. 656, pp. 476-480, January, 2016.
[104]T. Marimuthu and N. Anandhan, "Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells," Materials Research Bulletin, vol. 95, pp. 616-624, November, 2017.
[105]Bing-Xin Lei, Ping Zhang, He-Kang Qiao, Xiao-Feng Zheng, Yan-Shan Hu, Guo-Lei Huang, Wei Sun, Zhen-Fan Sun, Xian-Xi Zhang, "A facile template-free route for synthesis of anatase TiO2 hollow spheres for dye-sensitized solar cells," Electrochimica Acta, vol. 143, pp. 129-134, October, 2014.
[106]Y. L. Zhao, D. M. Song, Y. H. Qiang, X. Q. Gu, L. Zhu, and C. B. Song, "Dye-sensitized solar cells based on TiO2 hollow spheres/TiO2 nanotube array composite films," Applied Surface Science, vol. 309, pp. 85-89, August, 2014.
[107]P. Xiang, F. Lv, T. Xiao, L. Jiang, X. Tan, and T. Shu, "Improved performance of quasi-solid-state dye-sensitized solar cells based on iodine-doped TiO2 spheres photoanodes," Journal of Alloys and Compounds, vol. 741, pp. 1142-1147, April, 2018.
[108]P. Xiang, W. Ma, T. Xiao, L. Jiang, X. Tan, and T. Shu, "Ta-doped hierarchical TiO2 spheres for dye-sensitized solar cells," Journal of Alloys and Compounds, vol. 656, pp. 45-50, January, 2016.
[109]Jiahuan Zhao, Yana Yang, Can Cui, Haihua Hu, Yichao Zhang, Juan Xu, Bingqing Lu, Lingbo Xu, Jiaqi Pan, Weihua Tang, "TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells: the effect of sphere diameter," Journal of Alloys and Compounds, vol. 663, pp. 211-216, April, 2016.
[110]Lihua Bai, Xiaolian Liu, Meiya Li, Kaimo Guo, Mengdai Luoshana, Yongdan Zhu, Renhui Jiang, Lei Liao, Xingzhong Zhao, "Plasmonic enhancement of the performance of dye-sensitized solar cells by incorporating hierarchical TiO2 spheres decorated with au nanoparticles," Electrochimica Acta, vol. 190, pp. 605-611, February, 2016.
[111] Zhen Wang, Yiwen Tang, Meiya Li, Yongdan Zhu, Mingyue Li, Lihua Bai, Mengdai Luoshan, Wen Lei, Xingzhong Zhao, "Plasmonic enhancement of the performance of dye-sensitized solar cells by incorporating TiO2 nanotubes decorated with Au nanoparticles," Journal of Alloys and Compounds, vol. 714, pp. 89-95, August, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 鈣鈦礦主動層堆疊二氧化鈦電子傳輸層應用於鈣鈦礦太陽能電池之研究
2. 以自我組裝法組裝金奈米粒子/二氧化鈦奈米複合薄膜應用於葡萄糖感測之研究
3. 以聚多巴胺修飾金奈米粒子-二氧化鈦奈米複合薄膜 應用於侷部表面電漿共振葡萄糖生物感測器之研究
4. 維生素C還原法製備還原氧化石墨烯混合 二氧化鈦聚集體之染料敏化太陽能電池光電極
5. 探討及製備石墨烯多層電子傳輸層之染料敏化太陽能電池
6. 奈米碳混合薄膜應用於染料敏化太陽能電池
7. 二氧化鈦粒子與變形二氧化鈦聚集體製備雙層結構應用於染料敏化太陽能電池光電極之研究
8. 新型全局最大功率點追蹤演算法應用於太陽能系統在部分遮陰
9. 適性最佳網路切片與服務功能串鏈之NFV/SDN控制法於多元服務存取之5G結合行動邊緣計算與全球雲端計算
10. 金奈米粒子之侷部表面電漿共振效應修飾二氧化鈦 電子傳輸層製備鈣鈦礦太陽能電池
11. 以半胱胺酸修飾自組金奈米粒子於ITO玻璃應用於銅離子感測器之研究
12. 以二步旋塗法應用於不同溫度之玻璃基板及不同溶液下之鈣鈦礦太陽能電池
13. 住宅大樓裝置智慧化管理設備之需求性評估
14. 以二氧化鈦及二氧化鈦-石墨烯堆疊結構修飾光電極應用於染料敏化太陽能電池
15. 以光化學法研製金奈米粒子應用於染料敏化太陽能電池探討其光電特性之影響