跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張語軒
研究生(外文):CHANG, YU-HSUAN
論文名稱:自動駕駛對駕駛者情境警覺與突發狀況下接管能力之影響
論文名稱(外文):Effect on situation awareness and ability of take-over in self-driving vehicles
指導教授:柳永青柳永青引用關係
指導教授(外文):LIU, YUNG-CHING
口試委員:陳敏生王安祥
口試委員(外文):CHEN, MIN-SHENGWANG, AN-HSIANG
口試日期:2018-01-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:自動駕駛駕駛模擬器情境警覺全面評估技術情境警覺
外文關鍵詞:Automated DrivingDriving SimulatorSAGATSituation Awareness
相關次數:
  • 被引用被引用:3
  • 點閱點閱:617
  • 評分評分:
  • 下載下載:148
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討自動駕駛下的情境警覺能力,突發狀況發生的接管能力及主觀感覺,為一3 x (模擬駕駛三種狀態:手動駕駛vs. 自動駕駛看道路風景vs. 自動駕駛使用手機;組間設計) x 2(道路負荷:高負荷vs. 低負荷;組內設計)混因子實驗設計,受測者共60人(男性36人),平均年齡23.1歲(標準差2.1)。
研究發現,在不同駕駛模式下,自動駕駛使用手機時接管反應時間較短,但不論在執行粗調或執行微調階段,自動駕駛使用手機組所花費的時間皆為最長,方向盤角度變異也最大。情境警覺方面,聽覺SA於低負荷場景時駕駛者SA1及SA2表現顯著較好;自動駕駛看風景組的聽覺SA1顯著優於使用手機組。在主觀評量的結果得知高負荷場景對駕駛者產生較大焦慮及危險感,且對完成整體實驗信心較低,駕駛模式則是使用手機組產生較大焦慮不安感覺,看風景組則是顯著較少時間壓力及聽覺負荷的主觀感覺。
綜合結果,自動駕駛看道路風景的駕駛者,駕駛績效與一般手動駕駛者無差異,甚至車道位置變異比手動駕駛小,情境警覺部分也沒有因為無聊或想睡而忽略聽覺或視覺上的危險;主觀評量之下雖然大部分沒有顯著降低手動駕駛者的負面感覺,但根據平均數得知對於負面的主觀感覺,看道路風景組的分數普遍最低,倘若未來自動駕駛普及化,相較於使用手機,駕駛者僅瀏覽道路風景在安全上是較為可行的,但同時也要考慮到駕駛者因汽車行進過程乏味而睡著的風險。

A 2 (traffic complexity: high and low load driving environment; within-subject) x 3 (driving condition: manual, automated driving-look landscape and automated driving-use smart phone; between-subject) was used for this experiment. 60 drivers participated in the current study (36 males). The average age was 23.1(SD=2.1).
The results showed that drivers of automated driving-use smart phone spend the longest time except take-over request time, and the variances of steering wheel angle were the largest. Auditory SA1 and SA2 are better in low load driving environment. Auditory SA1 is better in automated driving-look landscape. The results of subjective rate showed that when driving in high load environment, cause people more negative feelings. The drivers of automated driving-use smart phone felt more anxiety.
In summary, the results revealed that the driving behavior of the drivers look landscape when automated driving were about the same as manual drivers. Compared with using smart phone, automated driving-look landscape is more safe and feasible.

摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3觀念性架構與研究流程 4
第二章 文獻探討 6
2.1自動化與人員之關係及影響 6
2.2情境警覺 7
2.3自動駕駛下情境警覺的影響 9
2.4 自動駕駛的接管行為 9
第三章 研究方法 11
3.1受測者 11
3.2實驗設備 11
3.3受測者工作 15
3.4實驗劇本 17
3.5實驗設計 19
3.6實驗程序 20
3.7資料收集 21
第四章 結果 23
4.1 突發狀況下接管差異 23
4.1.1 察覺時間比較 23
4.1.2 判定時間比較 24
4.1.3 執行粗調時間 25
4.1.4 執行粗調橫向加速度 26
4.1.5 執行粗調方向盤角度變異 27
4.1.6 執行粗調平均車速 29
4.1.7 執行粗調平均車速變異數 31
4.1.8 執行粗調車道位置變異數 31
4.1.9 執行微調時間 32
4.1.10 執行微調橫向加速度變異 33
4.1.11 執行微調方向盤角度變異 35
4.1.12 執行微調平均車速 36
4.1.13 執行微調平均車速變異 37
4.1.14 執行微調車道位置變異 38
4.1.15 車道位置軌跡 39
4.2 情境警覺三階段差異 41
4.2.1 視覺情境警覺 41
4.2.2 聽覺情境警覺 43
4.3主觀評量差異 46
第五章 結論與建議 54
5.1 突發狀況下接管差異之影響 54
5.2 情境警覺三階段差異之影響 54
5.3 駕駛後主觀評量差異之影響 55
5.4 建議 55
參考文獻 57
附錄一 61
附錄二 62
附錄三 64
附錄四 66


Albert, M., Lange, A., Schmidt, A., Wimmer, M., & Bengler, K. (2015). Automated driving–Assessment of interaction concepts under real driving conditions. Procedia Manufacturing, 3, 2832-2839.
De Winter, J. C. F., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 196–217.
Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role of trust in automation reliance. International Journal of Human-Computer Studies, 58(6), 697-718.
Endsley, M. R. (1988, October). Design and evaluation for situation awareness enhancement. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 32, No. 2, pp. 97-101). SAGE Publications.
Endsley, M. R. (1999). Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42(3), 462-492.
Endsley, M. R., & Jones, D. G. (1995). Situation awareness requirements analysis for TRACON air traffic control (TTU-IE-95-01). Lubbock, TX: Texas Tech University.
Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(2), 381-394.
Endsley, M. R. (1995a). Measurement of situation awareness in dynamic systems. Human Factors, 37, 65–84.
Endsley, M. R., & Robertson, M. M. (2000). Situation awareness in aircraft maintenance teams. International Journal of Industrial Ergonomics, 26(2), 301-325.
Endsley, M. R., & Rodgers, M. D. (1994). Situation awareness information requirements for en route air traffic control (Tech. Rep. DOT/FAA/AM-94/27). US Department of Transportation, Office of Aviation Medicine, Washington, DC.
Endsley, M. R. (2015). Final reflections: Situation awareness models and measures. Journal of Cognitive Engineering and Decision Making, 9(1), 101-111.
Gold, C., Damböck, D., Lorenz, L., & Bengler, K. (2013, September). “Take over!” How long does it take to get the driver back into the loop?. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 57, No. 1, pp. 1938-1942). SAGE Publications.
Hancock, P. A., Jagacinski, R. J., Parasuraman, R., Wickens, C. D., Wilson, G. F., & Kaber, D. B. (2013). Human-automation interaction research: Past, present, and future. ergonomics in design, 21(2), 9-14.
Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407-434.
Horiguchi, Y., Suzuki, T., Nakanishi, H., & Sawaragi, T. (2010, August). Analysis of time delay in user's awareness of ACC system mode transitions. In SICE Annual Conference 2010, Proceedings of (pp. 911-915). IEEE.
Hueting, T. F. (2013). Retrieving vehicle control after automation: A comparison between two methods to measure situation awareness.
Kaber, D., Jin, S., Zahabi, M., & Pankok, C. (2016). The effect of driver cognitive abilities and distractions on situation awareness and performance under hazard conditions. Transportation research part F: traffic psychology and behaviour, 42, 177-194.
Kass, S. J., Cole, K. S., & Stanny, C. J. (2007). Effects of distraction and experience on situation awareness and simulated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 10(4), 321-329.
Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over of vehicle control in highly automated driving. Transportation research part F: traffic psychology and behaviour, 39, 19-32.
Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50-80.
Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in human-machine systems. Ergonomics, 35(10), 1243-1270.
Lee, J. D., & Moray, N. (1994). Trust, self-confidence, and operators' adaptation to automation. International journal of human-computer studies, 40(1), 153-184.
Ma, R., & Kaber, D. B. (2005). Situation awareness and workload in driving while using adaptive cruise control and a cell phone. International Journal of Industrial Ergonomics, 35(10), 939-953.
Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human–human and human–automation trust: an integrative review. Theoretical Issues in Ergonomics Science, 8(4), 277-301.
Melcher, V., Rauh, S., Diederichs, F., Widlroither, H., & Bauer, W. (2015). Take-over requests for automated driving. Procedia Manufacturing, 3, 2867-2873.
Merat, N., & Jamson, A. H. (2009). Is Drivers' Situation Awareness Influenced by a Fully Automated Driving Scenario?. Human factors, security and safety.
Moray, N., Inagaki, T., & Itoh, M. (2000). Adaptive automation, trust, and self-confidence in fault management of time-critical tasks. Journal of Experimental Psychology: Applied, 6(1), 44.
Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39(3), 429-460.
Neubauer, C., Matthews, G., & Saxby, D. (2012). The effects of cell phone use and automation on driver performance and subjective state in simulated driving. In Proceedings of the Human Factors and Ergonomics Society 56th annual meeting (Vol. 56, No. 1, pp. 1987–1991). Sage Publications.
Parasuraman, R. (1987). Human-computer monitoring. Human Factors: The Journal of the Human Factors and Ergonomics Society, 29(6), 695-706.
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39, 230–253.
Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A Model for Types and Levels of Human Interaction with Automation. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, 30(3).
Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation awareness, mental workload, and trust in automation: Viable, empirically supported cognitive engineering constructs. Journal of Cognitive Engineering and Decision Making, 2(2), 140-160.
Rovira, E., K. McGarry, and R. Parasuraman. 2007. “Effects of Imperfect Automation on Decision Making in a Simulated Command and Control Task.” Human Factors 49 (1): 7687.
Saffarian, M., De Winter, J. C. F., & Happee, R. (2012, September). Automated driving: human-factors issues and design solutions. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 56, No. 1, pp. 2296-2300). Sage Publications.
Schömig, N., Hargutt, V., Neukum, A., Petermann-Stock, I., & Othersen, I. (2015). The interaction between highly automated driving and the development of drowsiness. In 6th International conference on applied human factors and ergonomics (AHFE), Las Vegas, USA.
Seppelt, B. D., & Victor, T. W. (2016). Potential solutions to human factors challenges in road vehicle automation. In G. Meyer & S. Beiker (Eds.). Road vehicle automation (Vol. 3, pp. 131–148). Switzerland: Springer International Publishing.
Spiessl, W., & Hussmann, H. (2011). Assessing error recognition in automated driving. IET intelligent transport systems, 5(2), 103-111.
Stanton, N. A., & Young, M. S. (2005). Driver behaviour with adaptive cruise control. Ergonomics, 48(10), 1294-1313.
Stanton, N.A., 2015. Responses to autonomous vehicles. Ingenia 62 (69), March.
Underwood, G., Ngai, A., & Underwood, J. (2013). Driving experience and situation awareness in hazard detection. Safety science, 56, 29-35.
Vlakveld, W. (2015). Transition of control in highly automated vehicles. A literature review (Report No. R-2015-22). SWOV Institute for Road Safety Research
Wang, J., Zhang, F. L., Jin, J., & Chen, W. (2010, July). Alert analysis and threat evaluation in Network Situation Awareness. In Communications, Circuits and Systems (ICCCAS), 2010 International Conference on (pp. 278-281). IEEE.
Wiener, E. L., & Curry, R. E. (1980). Flight-deck automation: Promises and problems. Ergonomics, 23(10), 995-1011.
Zeeb, K., Buchner, A., & Schrauf, M. (2015). What determines the take-over time? An integrated model approach of driver take-over after automated driving. Accident Analysis & Prevention, 78, 212-221.
Zeeb, K., Buchner, A., & Schrauf, M. (2016). Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accident Analysis & Prevention, 92, 230-239.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top