(3.235.108.188) 您好!臺灣時間:2021/02/25 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉冠佑
研究生(外文):LIU, GUAN-YOU
論文名稱:自適應區間第二型模糊PI滑模控制器設計應用於XY平台軌跡控制
論文名稱(外文):Design of Adaptive Interval Type-2 Fuzzy PI Sliding Mode Controller for X-Y Stage Trajectory Control
指導教授:毛偉龍毛偉龍引用關係
指導教授(外文):MAO, WEI-LUNG
口試委員:蔡清池王榮爵蘇國嵐毛偉龍
口試委員(外文):TSAI, CHING-CHINWANG, RONG-JYUESU, KUO-LANMAO, WEI-LUNG
口試日期:2017-12-22
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:XY平台軌跡控制自適應區間第二型模糊PI滑模控制NURBS曲線
外文關鍵詞:Adaptive interval type-2 fuzzy PI sliding mode controlNURBS curveTrajectory controlX-Y linear table
相關次數:
  • 被引用被引用:4
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來自動化的趨勢越來越受到關注,使得精密平台也開始被廣泛的應用,而如何使精密平台能有好的控制及軌跡追隨,則必須要有好控制方法來控制平台,所以控制方法的研究非常值得我們去探討的。在本論文中,提出了XY雙軸控制平台系統的高精度軌跡追隨控制的自適應區間第二型模糊PI滑模控制器,將傳統滑模控制器的切換項加入PI控制項,在切換函數設定邊界值,當邊界值大於等於邊界值則使用傳統滑模切換函數,反之則使用PI控制項,傳統的控制器依照原本的滑模切換方法設計,PI控制項是依照滑模函數參數設計出來。自適應區間第二型模糊PI滑模控制理論對於參數的不確定性和外界負載干擾進行推導並分析對於系統的穩定性分析,利用Lyapunov穩定性與Projection algorithm方法,Lyapunov穩定性定理用來證明系統的漸進穩定性和所有不確定的參數在閉迴路的系統,而Projection algorithm 方法是先確定數值並預先指定的估測參數的邊界。本論文以模擬及實驗來呈現結果,模擬方面提出近似於伺服馬達的非線性數學方程式,並以實際XY平台的參數進行對照,經過模擬測試再以實際平台做測試,會依照提出的方法進行模擬與實際XY平台做軌跡測試。軌跡規劃方面則是以NURBS曲線方法設計圖形,所設計的圖形分別為圓形、蝴蝶結、心形和星形,四種圖形進行軌跡追隨,透過模擬以及XY平台實驗發現都呈現良好的軌跡追隨,最後透過計算追隨平均誤差和追隨誤差之標準差,實驗結果顯示所提出的方法均優於比較方法,能降低滑模控制器所帶來的抖動以及有更好的軌跡追隨呈現。
In recent years, automation is getting more and more attention. Precision trajectory control in modern machining processes is an important issue for two-axis contour tracking applications. However, how to make the precision platform have good control and trajectory tracking that must have a good control method to control the platform. The control method which is worth to explore. In this paper, adaptive interval type-2 fuzzy PI sliding mode controller(AIT2FPISMC) is designed and proposed for high-precision trajectory control of X-Y axis motion stage. Let the traditional sliding mode controller which the switching part add Proportional Integral(PI) control item. It can attenuate the chattering problem in the presence of unmodeled system dynamics and external disturbances. To ensure parameter boundaries, projection algorithm is utilized for the adaptive control law. The AIT2FPISMC adaptation scheme adjusts the fuzzy parameter vectors based on the Lyapunov theorem approach, so that the asymptotic stability of the developed motion system can be guaranteed. Trajectory planning is based on NURBS curve design graphics. The X-Y linear table is experimentally and simulation investigated with four typical contours, namely, circle, bowknot, heart and star reference contours.
Experimental results show that the proposed controller achieves improved tracking capability and reveal that the AIT2FPISMC outperforms other comparison schemes with regard to model uncertainties and cross-coupling interference.

摘要 i
Abstract iii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻探討 2
1.4 研究方法 3
1.5 論文內容架構 5
第二章 運動控制平台系統架構 6
2.1 運動控制卡 6
2.1.1 運動控制卡 PCI-1240U 6
2.1.2 專用端子版ADAM-3952 7
2.1.3 數位轉類比卡 PCI-1716 7
2.1.4 專用端子板 PCLD-87106 8
2.2 光學尺 9
2.2.1 增量型的直線編碼器 9
2.2.2 光學尺原理 10
2.2.3 編碼器 10
2.3 光電感測器(極限開關) 11
2.4 馬達驅動器 12
2.4.1 驅動器_MR-J2s-40A 規格 12
2.4.2 驅動器_EXD2020M 規格 13
2.5 馬達 14
2.5.1 馬達規格_HC-KFS43 14
2.5.2 馬達規格_ASM17H236H-2004B2 15
2.6 交流伺服馬達模型 16
2.6.1 非線性模型 16
2.7 數學模擬工具MATLAB 18
2.7.1 MATLAB環境介紹 18
2.7.2 Real-Time-Workshop(RTW)工具箱 19
2.7.3 S-function 19
第三章 控制方法 21
3.1 傳統滑模控制 21
3.2 區間第二型模糊系統 23
3.2.1 區間第二型模糊集合 23
3.2.2 第二型模糊邏輯系統架構 24
3.3 自適應區間第二型模糊PI滑模方法 27
3.3.1 系統描述 27
3.3.2 PI滑模控制器設計 28
3.4 NURBS曲線軌跡規劃 33
3.4.1 NURBS基本介紹 33
3.4.2 圓形軌跡規劃 35
3.4.3 蝴蝶結軌跡規劃 36
3.4.4 心形軌跡規劃 37
3.4.5 星形軌跡規劃 38
第四章 實驗結果 39
4.1 實驗方式 39
4.2 模擬結果 45
4.2.1 模擬的參數 45
4.2.2 模擬的軌跡 47
4.2.3 模擬的數據統計 58
4.3 實驗結果 60
4.3.1 實驗的參數 60
4.3.2 實驗的軌跡 61
4.3.3 實驗的數據統計 77
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 79
參考文獻 80

[1]P.B. Zhao, Y.Y. Shi, J. Huang, “Proportional-Integral Based Fuzzy Sliding Mode Control of the Milling Head,” Control Engineering Practice, Vol.53,pp.1-13, 2016.
[2]M. Ghaemi, M. R. Akbarzadeh-T, “Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems,” Iranian Journal of Fuzzy Systems Vol.11, pp.1-21, 2014.
[3]M. Ghaemi, M. R. Akbarzadeh-T, M. Jalaeian-F, “Adaptive interval type-2 fuzzy PI sliding mode control with optimization of membership functions using genetic algorithm,” Second Int. Conf. on Computer and Knowledge Engineering (ICCKE), pp. 123–128, October 18-19. 2012.
[4]L.X Wang, A course in Fuzzy System and Control, Pearson, 2010.
[5]S.I. Han, J.M. Lee, “Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage,” Mechatronics, Vol. 22, pp. 222-238, 2012.
[6]J. Wang, A.B. Rad, P.T. Chan, “Indirect Adaptive Fuzzy Sliding Mode Control: Part I: Fuzzy Switching,” Fuzzy Sets and Systems, Vol.122, pp.21-30,2001.
[7]P.T Chan, A. B. Rad, J. Wang, “Indirect Adaptive Fuzzy Sliding Mode Control: Part II: Parameter Projection and Supervisory Control,” Fuzzy Sets and Systems, Vol.122, pp.31-43,2001.
[8]J. Hua, L.X. An, Y.M. Li, “Bionic Fuzzy Sliding Mode Control and Robustness Analysis,” Applied Mathematical Modelling, Vol.39, pp.4482-4493, 2015.
[9]H.F. Ho, Y.K. Wong, A.B. Rad, “Adaptive Fuzzy Sliding Mode Control with Chattering Elimination for Nonlinear SISO Systems,” Simulation Modelling Practice and Theory, pp. 1199-1210, 2009.
[10]H.B Zhou, H. Ying, J.A. Duan, “Adaptive Control Using Interval Type-2 Fuzzy Logic,” IEEE Trans. Fuzzy Systems, pp.836 – 841, 2009.
[11]D. Wu, “A Brief Tutorial on Interval type-2 Fuzzy Sets and Systems,” [Online]. Availabl e: https://sites.google.com/site/drwu09/publications/completepubs
[12]J. M. Mendel, “Type-2 Fuzzy Sets and Systems: An Overview,” IEEE Comput. Intell. Mag., vol. 2, no. 2, pp. 20-29, Feb. 2007.
[13]劉金琨,“滑模變結構控制MATLAB仿真”,清華大學出版社,北京,2005。
[14]Piegl L, Tiller W., “The NURBS Books. 2nd ed.,” Berlin, Heidelberg:Springer, 1997.
[15]S.Y. Chen, Y.H. Lai, H.T. Lu, “Contours Planning and Visual Servo Control of XXY Positioning System Using NURBS Interpolation Approach,” IJRTEM., Volume 1 Issue 4, pp. 16-23, June. 2016.
[16]H.T. Yau, M.T. Lin, M.S. Tsai, “Real-Time NURBS Interpolation Using FPGA for High Speed Motion Control,” Computer-Aided Design, vol. 38, no. 10, pp. 1123-1133, 2006.
[17]F.J. Lin, Y.S. Kung, S.Y. Chen, Y.H. Liu, “Recurrent Wavelet-Based Elman Neural Network Control for Multi-Axis Motion Control Stage Using Linear Ultrasonic Motors,” IET Electr. Power Appl., pp. 314-332, 2010)
[18]M. Gopi, S. Manohar, “A Unified Architecture for the Computation of B-Spline Curves and Surfaces,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 12, pp. 1275-1287, Dec. 1997.
[19]孫義欽, “MATLAB與嵌入式控制器之整合控制應用,” 碩士論文, 國立中山大學機械與機電工程研究所, 2004.
[20]F.C. Teng, “Real-time control using Matlab Simulink,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 2697–2702, 2000.
[21]P. S. Shiakolas, D. Piyabongkarn, “On the development of a real-time digital control systemusing xPC-Target and a magnetic levitation device,” Proceedings of the 40th IEEE Conference on Decision and Co1ntrol, Vol. 2, pp. 1348 –1353, 2001.
[22]D. Hanafi, M. Tordon and J. Katupitiya, “An Active Axis Control System for a Conventional CNC Machine,” Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference, Vol.2, 1188-1193, 2003.
[23]F. J. Lin, H. J. Shieh, P. H. Shieh and P. H. Shen, “An Adaptive Recurrent-Neural-Network Motion Controller for X–Y Table in CNC Machine,” IEEE Transactions on Systems, Man, And Cybernetics-Part B: Cybernetics, Vol. 36, No. 2, April 2006.
[24]L. Gang, J. Youngmin, G. Rong and L. Hao, “Notice of Retraction Trajectory dynamic control for CNC machining based on velocity,” Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference, pp276 – 280, 16-18 April 2010.
[25]E. C. Park, H. Lim, and C. H. Choi, “Position Control of X–Y Table at Velocity Reversal Using Presliding Friction Characteristics,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 1, January 2003.
[26]K.S. Narendra, A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[27]PCI-1710 series User’s Manual,Advantech Co,Ltd.
[28]PCLD-8710 Wiring Terminal Board User’s manual.
[29]PCI-1240U User Manual.
[30]ADAM-3952PMA_DS.
[31]Mercury-II-5000-Data-Sheet,MicroE System.
[32]精密機械概論–光學尺篇(X)
[33]Slot-type Photomicrosensor (Non-modulated)EE-SX47/67, OMRON Corporation Industrial Automation Company.
[34]MELSERVO-J2-Super, MITSUBISHI ELECTRIC CORPORATION.
[35]2相微步進小型驅動器(2 PHASE MICRO STEP DRIVER) EXD2020M-N 使用說明書, V1.0_C100518,大內實業有限公司。
[36]SMMC STEPPING MOTOR Datasheet,司麥德國際股份有限公司。
[37]Real-Time Workshop For Use with Simulink,Version 6,The MathWorks.
[38]Simulink Model-Based and System-Based Design,Version 5,The MathWorks.
[39]H.K. Khalil, “Nonlinear System “, Prentice-Hall, Upper Saddle River, NJ, 1996.
[40]泛用伺服馬達應用技術(第二版), 顏嘉男, 全華。
[41]機電整合控制-多軸運動設計與應用,施慶隆、李文猶, 全華。
[42]Embedded MATLA User’s Guide, The Mathwork.
[43]S.I. Han, J.M. Lee, “Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage,” Mechatronics, Vol. 22, pp. 222-238, 2012.
[44]F.J. Lin, P.H. Shieh, P.H. Shen, “Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine,” IEEE Proc. Vol. 153, No. 1, 2006.
[45]陳佳漢, “多軸平台運動軌跡控制,” 碩士論文, 國立雲林科技大,2014.
[46]蕭偉城, “適應性模糊控制在XY平台應用,” 碩士論文, 國立雲林科技大,2016.
[47]林庭煥, “自適應模糊滑模PI控制在XY平台軌跡應用,” 碩士論文, 國立雲林科技大,2017.

電子全文 電子全文(網際網路公開日期:20230102)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔