(18.206.177.17) 您好!臺灣時間:2021/04/23 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳冠毅
研究生(外文):WU, GUAN-YI
論文名稱:具低環路電流之模組化全橋相移式轉換器研製
論文名稱(外文):Implementation of Modular Phase-Shifted Full-Bridge Converter with Low Circulating Current
指導教授:林伯仁
指導教授(外文):LIN, BOR-REN
口試委員:江煥鏗林志鴻
口試委員(外文):CHIANG, HUANN-KENGLIN, CHIH-HONG
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:半橋LLC諧振式轉換器全橋相移式轉換器環路電流模組化零電壓切換被動緩衝器
外文關鍵詞:Half-Bridge LLC Resonant ConverterPhase-Shifted Full-Bridge ConverterCirculating CurrentModularZero-Voltage Switching (ZVS)Passive snubber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一具低環路電流之模組化全橋相移式轉換器,適用於高輸入電壓及高輸出電流情況下之應用,此轉換器採用二組模組化之全橋相移式轉換器以整合串聯方式連接,而每一組模組化之全橋相移式轉換器是由傳統全橋相移式轉換器與半橋LLC諧振式轉換器以共用落後臂功率開關元件之方式所組成,因此可以改善傳統全橋相移式轉換器之缺點,拓展落後臂之功率開關元件零電壓切換範圍,並降低功率開關元件的數量。由於串接之全橋轉換器與飛輪電容電路連接,並且利用飛輪電容充放電,解決輸入直流分隔電容電壓不平衡的問題,在二次側輸出端利用被動緩衝器電路,使二次側產生一個正的整流電壓,在環路狀態的時候一次側電流可以降至零,因此可以減少一次側導通損失,並且在環路狀態時達到低的環路電流損失。
最後此論文將透過模擬軟體及實作來詳細的分析所提出之轉換器,並且驗證其可行性,實作電路之電器規格為輸入電壓750-800 VDC,輸出電壓48 VDC,負載滿載電流35 A,輸出總額定瓦數1.68 kW。

A modular phase-shifted full-bridge converter with less circulating current is proposed in this thesis for high input voltage and high output current applications. The proposed converter adopts two modular phase-shifted full-bridge converters connected in series. Each modular phase-shifted full-bridge converter consists of a traditional phase-shifted full-bridge converter and a half-bridge LLC resonant converter with sharing power switches of lagging leg to achieve wider operating range of zero-voltage switching (ZVS) and reduce power switch counts. Since the series-connected full-bridge converters are connected with a flywheel capacitor to solve input split voltage unbalanced problem. In the secondary side, a passive snubber circuit is used to produce a positive rectified voltage for reduce the primary current to zero during the freewheeling state.
Finally, a detailed circuit analysis and the feasibility of the proposed converter are conducted through simulation results,and experiments with 750-800 VDC input voltage, 48 VDC output voltage, 35 A output load current and 1.68 kW rated power.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究內容 3
1.3 論文綱要 4
第二章 全橋相移轉換器之架構與分析 5
2.1 硬性切換技術介紹 5
2.2 柔性切換 6
2.3 全橋相移轉換器 7
2.4 全橋相移轉換器動作原理分析 8
2.4.1 [動作模式一](t0~t1) 10
2.4.2 [動作模式二](t1~t2) 10
2.4.3 [動作模式三](t2~t3) 11
2.4.4 [動作模式四](t3~t4) 11
2.4.5 [動作模式五](t4~t5) 12
第三章 半橋諧振式轉換器電路介紹 13
3.1半橋串聯諧振式轉換器(SRC) 13
3.2半橋並聯諧振式轉換器(PRC) 15
3.3半橋LLC諧振式轉換器 17
第四章 具低環路電流之模組化全橋相移轉換器分析 22
4.1 電路架構介紹 22
4.1.1 一次側串聯概念 24
4.1.2 自動平衡電壓電容技術 24
4.1.3 被動緩衝器之技術 25
4.1.4 共用變壓器之技術 26
4.2 電路工作原理介紹 26
4.3 電路工作模式分析 28
4.3.1 [動作模式一](t0~t1) 30
4.3.2 [動作模式二](t1~t2) 31
4.3.3 [動作模式三](t2~t3) 33
4.3.4 [動作模式四](t3~t4) 34
4.3.5 [動作模式五](t4~t5) 36
4.3.6 [工作模式六] (t5~t6) 37
第五章 電路元件設計與分析 39
5.1 電路穩態分析 39
5.2 電路參數設計 41
5.2.1 半橋LLC諧振式轉換器之變壓器設計 41
5.2.2 全橋相移式轉換器之變壓器設計 46
5.2.3 輸出濾波電感設計 50
5.2.4 輸出整流二極體之設計 51
5.2.5 輔助電路二極體之設計 51
5.2.6 功率開關元件之設計 52
5.2.7 諧振電感設計 53
5.2.8 輸出濾波電容的設計 53
5.3 損耗預估與效率預估 54
5.3.1 變壓器損耗 54
5.3.2 二極體損耗 56
5.3.3 功率開關元件損耗 56
5.3.4 輸出濾波電感損耗 56
5.3.5 電路效率預估 57
第六章 模擬與實驗數據結果 59
6.1 電路實作規格 59
6.2 Powersim電路模擬 62
6.3 電路實測波形 71
第七章 結論及未來展望 102
7.1 結論 102
7.2 未來展望 103
參考文獻 104


[1] Mohan. Undeland. Robbins, 1995,電力電子學,江炫樟譯,全華科技圖書,台北。
[2] R. A. Mack, 2008,交換式電源供應器剖析,林伯仁、羅有綱、陳俊吉譯,初版,全華科技圖書,台北。
[3] Sanjaya Maniktala, 2006,交換式電源供應器設計與最佳化,林伯仁譯,全華科技圖書,台北。
[4] G. C. Chryssis, 1995,高頻交換式電源供應器原理與設計,第二版,梁適安譯,全華科技圖書,台北。
[5] W. Li, Q. Jiang, Y. Mei, C. Li, Y. Deng, and X. He, “Modular multilevel DC/DC converters with phase-shift control scheme for high-voltage DC-based systems,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 99-107, 2015.
[6] Y. Chen, X. Pei, and L. Peng, “A high performance dual output DC-DC converter combined the phase shift full bridge and LLC resonant half bridge with the shared lagging leg,” in Proc. of IEEE APEC Conf., pp. 1435-1440, 2010.
[7] R. Watson and F. C. Lee, “Analysis, design and experimental results of a 1kW ZVS-FB-PWM converter employing magamp secondary side control,” in Proc. of IEEE APEC Conf., pp. 166-172, 1994.
[8] Y. Jang, M. M. Jovanovic, and Y. M. Chang, “A new ZVS-PWM full-bridge converter,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1122-1129, 2003.
[9] X. Ruan and Y. Yan, “Soft-switching techniques for PWM full bridge converters,” in Proc. of IEEE PESC Conf., vol. 2, pp. 634-639, 2000.
[10] J. A. Sabate, V. Vlatkovic, R. B. Risley, F. C. Lee, and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage- switched PWM converter,” in Proc. of IEEE APEC Conf., pp. 275-284, 1990.
[11] A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 423-430, 1993.
[12] H. J. Jiang, G. Maggetto, and P. Lataire, “Steady-state analysis of the series resonant DC-DC converter in conjunction with loosely coupled transformer-above resonance operation,” IEEE Trans. Power Electron., vol. 14, no 3, pp. 469-480, 1999.
[13] A. K. S. Bhat and M. M. Swamy, “Analysis and design of a parallel resonant converter including the effect of high-frequency transformer,” in Proc. of IEEE PESC Conf., vol. 2, pp. 768-775, 1989.
[14] 陳雅君,2009,LLC諧振轉換器之設計與研製,國立成功大學,碩士論文。
[15] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. of IEEE APEC Conf., vol. 2, pp. 728-735, 2001.
[16] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. of IEEE APEC Conf., pp. 1108-1112, 2002.
[17] M. A. Halim, M. N. Hidayat, and M. N. Seroji, “Implementation and analysis of a half-bridge series-parallel LLC loaded resonant DC-DC converter for low power applications,” in Proc. of IEEE PEDS Conf., pp. 634-638, 2013.
[18] C. A. Cheng, H. W. Chen, E. C. Chang, C. H. Yen, and K. J. Lin, “Efficiency study for a 150W LLC resonant converter,” in Proc. of IEEE PEDS Conf., pp.1261-1265, 2009.
[19] 徐維利,2006,同步整流式LLC串聯半橋諧振轉換器之研製,國立台灣科技大學,碩士論文。
[20] B. R. Lin, Y. B. Nian, and T. Y. Shiau, “DC converter with full-bridge converters and flying capacitors,” in Proc. of IEEE TENCON Conf., pp. 1-6, 2014.
[21] 阮新波,2006,三電平直流變換器及其軟開關技術,科學出版社,北京。
[22] Q. Jiang, H. Yang, C. Li, W. Li, and X. He, “Phase shift controlled modular DC/DC converter with input voltage auto balance ability,” in Proc. of IEEE APEC Conf., pp. 1100-1105, 2014.
[23] I. O. Lee, and G. W. Moon, “Phase-shifted PWM converter with a wide ZVS range and reduced circulating current,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 908-919, 2013.
[24] B. R. Lin, H. R. Chen, and Y. B. Nian, “Soft switching hybrid converter with low circulating current,” in Proc. of IEEE PEDS Conf., pp. 202-207, 2015.
[25] Datasheet, 2013, “BiCMOS advanced phase-shift PWM controller - UCC3895,” TEXAS INSTRUMENTS, USA.
[26] Datasheet, 2010, “Schottky barrier rectifier MBR40100PT,” PANJIT, Taiwan.
[27] Datasheet, 2010, “Ferrite Material Characteristics - Ferrite Cores,” TDK, Japan.
[28] Datasheet, “Ferrite for Switching Power Supplies - E cores,” TDK, Japan.
[29] Datasheet, “Magnetic Powder Cores,” CSC, Korea.
[30] Datasheet, 2011, “Power MOSFET SiHG20N50C,” VISHAY, USA.
[31] Datasheet, 2013, “Magnetic Powder Cores,” SAMWHA, Korea.

電子全文 電子全文(網際網路公開日期:20230731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔