跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁倫
研究生(外文):Yu-Lun Huang
論文名稱:利用現地抽水試驗方法證明地下水的交互性原理
論文名稱(外文):A Verification of Reciprocity Principle of GroundwaterPumping Tests with Field Case Studies
指導教授:溫志超溫志超引用關係
指導教授(外文):Jet-Chau Wen
口試委員:溫志超徐國錦陳肇成
口試日期:2018-01-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:69
中文關鍵詞:交互性水力斷層掃描異質性
外文關鍵詞:ReciprocityHydraulic tomographyHeterogeneous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在物理學的觀念上,交互性原理是指給予兩個已知點 (點A與點B),當刺激源放置點A時,會影響觀測點B的反應資訊。互換後,將刺激源移置點B,則會影響觀測點A的反應資訊,若兩點的刺激源能量大小為相同的條件之下,所觀測的反應資訊結果相等時,則稱此結果符合交互性原理。在過去研究中有學者在現地部分提出以喀斯特地形的現地試驗資料進行分析,但未以循序抽水試驗的方式進行,也未探討現地受壓含水層的異質性水文地質參數分佈場與觀測洩降是否存在交互性的特性。因此,本研究利用現地監測井群,以循序抽水試驗的方式來檢視受壓含水層中,在兩口井互為抽水井的抽水試驗下,觀測井隨時間變化的洩降曲線之間的交互性,以及利用水力斷層掃描分析方法推估現地受壓含水層的異質性水文地質參數分佈場,並以交叉相關性分析,檢視觀測水頭與異質性水文地質參數分佈場之間交叉相關係數的交互性。結果顯示,在現地循序抽水試驗的觀測洩降中,部分存在交互性,部分存在交互性差距。在觀測水頭與異質性水文地質參數分佈場之間交叉相關係數的交互性結果中,數值試驗與現地試驗的結果皆顯示,在兩口井互為抽水井的情況下,觀測水頭與水文地質場的交叉相關性分佈具有交互性。
In the concept of physics, the principle of reciprocity refers to giving two known points (A and B). When the stimulus is placed at A, the reaction information of observation B will be affected. After the exchange, the stimulus source displacement point B, will affect the observation point A reaction information, if the two points of the stimulus source energy is the same under the same conditions, the observed reaction information results are equal, then the result is in line with the results reciprocity principle. In the past research, some scholars proposed the data of karst topography in the field but did not do so in the way of sequential pumping test, nor did they discuss the distribution of heterogeneous hydrogeological parameters and observed drawdown is there any reciprocity. Therefore, in this study, the current monitoring well group was used to examine the reciprocity between the drawdown curves of the observation wells with time under the pumping test of the two pumping wells in the pressurized aquifer by a sequential pumping test, and the use of hydraulic tomography analysis to estimate the heterogeneity of hydrogeological parameters distribution field of the current aquifer under pressure. Cross-correlation analysis was used to examine the reciprocity of cross-correlation coefficient between the observed head and the heterogeneous hydrogeological parameters distribution field. The results show that there is reciprocity in part of the observed drawdown in the spot sequential pumping test, and there is some gap in reciprocity. Among the reciprocity results of the cross correlation coefficient between the observed head and the heterogeneous hydrogeological parameters distribution field, both the numerical and in situ tests show that when the two wells are pumping wells each other, the head and hydrogeological field cross-correlation distribution is reciprocity.
Table of Contents
摘 要 i
Abstract ii
Table of Contents iii
List of Tables iv
List of Figures v
Chapter 1 Introduction 1
1.1 Study Motivation 5
1.2 Study Purpose 5
Chapter 2 Material and Method 6
2.1 Material. 6
2.1.1 Field Site Introduction. 6
2.1.2 Field Sequential Pumping Test. 7
2.2 Method 9
2.2.1 Statistical Error 9
2.2.2 Reciprocity Analysis of Observed Drawdown 10
2.2.3 Reciprocity Analysis of Observed Head and Hydrogeological Parameters 14
Chapter 3 Result and Discussion 21
3.1 Reciprocity Analysis of Observed Drawdown Result 21
3.2 Reciprocity Analysis of Observed Drawdown and Hydrogeological Parameters Result 32
3.2.1 Reciprocity Analysis of Synthetic Tests Result 32
3.2.2 Reciprocity Analysis of Field Tests Result 43
Chapter 4 Conclusion and Suggestion 56
4.1 Conclusion 56
4.2 Suggestion 59
Reference 60


1.Bruggeman, G. A. (1972), The reciprocity principle in flow through heterogeneous Porous media, in Fundamentals of Transport Phenomena in Porous Media, edited by IAHR, 136–149, Elsevier, Amsterdam.

2.Barker J. A., British Geological Survey, Wal/ingford, Oxfordshire, England (1991), The Reciprocity Principle and an Analytical Solution for Darcian, Water Resour. VOL. 27, NO. 5. PAGES 743-746,.

3.Hariga, N. T., A. B. Abda, R. Bouhlila, and J.-R. d. Dreuzy (2010), Definition and interests of reciprocity principle and reciprocity gap principle for groundwater flow problems. Adv. Water Resour., 33(8), 899–904, doi:10.1016/j.advwatres.2010.04.015.

4.Delay, F., P. Ackerer, and A. Guadagnini (2011), Theoretical analysis and field evidence of reciprocity gaps during interference pumping tests. Adv. Water Resour., 34(5), 592–606, doi:10.1016/j.advwatres.2011.02.006.

5.Delay, F., P. Ackerer, B. Belfort, and A. Guadagnini (2012), On the emergence of reciprocity gaps during interference pumping tests in unconfined aquifers, Adv. Water Resour., 46, 11–19, doi:10.1016/j.advwatres.2012.06.002.

6.Wu, C.-M., T.-C. J. Yeh, J. Zhu, T. H. Lee, N.-S. Hsu, C.-H. Chen, and A. F. Sancho (2005), Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resour. Res., 41, W09402, doi:10.1029/2004WR003717.

7.Mao, D., T.-C. J. Yeh, L. Wan, C.-H. Lee, K.-C. Hsu, J.-C. Wen, and W. Lu (2013), Corss-correlation analysis and information contents of observed heads during pumping tests in unconfined aquifers, Water Resour. Res., 49(2), 713–731, doi:10.1002/wrcr.20066.

8.Wen, J.-C., C.-M. Wu, T.-C. J. Yeh, and C.-M. Tseng (2010), Estimation of effective aquifer hydraulic properties from an aquifer test with multi-well observations (Taiwan), Hydrogeol. J., 18, 1143–1155,doi:10.1007/s10040-010-0577-1.

9.Huang, S.-Y., J.-C. Wen, T.-C. J. Yeh, W. Lu, H.-L. Juan, C.-M. Tseng, J.-H. Lee, and K.-C. Chang (2011), Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments, Water Resour. Res., 47, W10530, doi: 10.1029/2011WR010698.

10.Yeh, T.-C. J., and S. Liu (2000), Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36(8), 2095–2105, doi:10.1029/2000WR900114.

11.Yeh, T.-C. J., R. Srivastava, A. Guzman, and T. Harter (1993), A numerical model for two dimensional flow and chemical transport, Ground Water, 31(4), 634–644, doi:10.1111/j.1745-6584.1993.tb00597.x.

12.Liu, S., T.-C. J. Yeh, and R. Gardiner (2002), Effectiveness of hydraulic tomography: Sandbox experiments, Water Resour. Res., 38(4), 1034, doi:10.1029/2001WR000338.

13.Zhu, J., and T.-C. J. Yeh (2005), Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resour. Res., 41, W07028, doi: 10.1029/2004 WR003790.

14.Straface, S., T.-C. J. Yeh, J. Zhu, S. Troisi, and C. H. Lee (2007), Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy, Water Resour. Res., 43, W07432, doi:10.1029/2006WR005287.

15.Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T.-C. J. Yeh (2007), Laboratory sandbox validation of transient hydraulic tomography, Water Resour. Res., 43, W05404, doi:10.1029/2006WR005144.

16.Marinoni M, Delay F, Ackerer P, Riva M, Guadagnini A (2016), Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests. J. Hydrol., doi: 10.1016/j.jhydrol.2015.05.019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top