(3.236.228.250) 您好!臺灣時間:2021/04/13 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫唯峰
研究生(外文):SUN, WEI-FENG
論文名稱:比較硝酸及磷酸搭配過氧化氫進行微波改質廢棄碳纖維吸附水中RhB之研究
論文名稱(外文):Comparison of Adsorption Capacity of RhB by Waste Carbon Fiber Modified by Microwave of Nitric Acid and Phosphoric Acid with Hydrogen Peroxide
指導教授:郭昭吟郭昭吟引用關係
指導教授(外文):KUO, CHAO-YIN
口試委員:郭昭吟章日行黃小林
口試委員(外文):KUO, CHAO-YINCHANG JIH-HSINGHUANG HSIAO LIN
口試日期:2018-06-08
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:144
中文關鍵詞:磷酸硝酸廢棄碳纖維微波改質吸附羅丹明B
外文關鍵詞:Phosphoric acidNitric acidWaste carbon fiberMicrowave modificationAdsorptionRhodamine B
相關次數:
  • 被引用被引用:3
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微波加熱快速之便,製備廢棄碳纖維成為環境吸附材料,比較硝酸和磷酸兩種酸化劑配合過氧化氫活化之改質,以吸附水中染料RhB為成效分析。研究重點為比較不同微波溫度、不同酸化劑之成果。
本研究結果顯示,藉由不同酸化劑及微波溫度改質之碳纖維,其表面隨著微波改質溫度之上升,皆有表面結構不規則生成之情形,由磷酸改質之PC系列吸附材,當微波溫度超過600℃時,表面之氧原子明顯增多。在相同微波條件之下,比較磷酸和硝酸為酸化劑之吸附材效果,以磷酸為佳,其原因來自磷酸改質後表面含氧官能團較多,顯示本研究吸附材之成效。本研究最佳之環境吸附材PC600之製備率為20.7%,且由熱重損失實驗發現,製備之吸附材燒失溫度超過500℃,顯示利用廢棄碳纖維之特性可建立有利於高溫熱再生後多次使用之優勢,增加吸附材之再利用性。
本研究製備之吸附材PC600 (以磷酸為酸化劑於600℃改質之吸附材)於27℃時,在pH=7之中性環境下吸附能力最佳,其吸附可達68.91 mg/g,顯示本研究製備之PC600吸附材於中性環境下最有利於水中污染物RhB之吸附。而等溫實驗中則以PC700吸附材於較高(57℃)之吸附溫度下有最佳吸附能力達165.91 mg/g。而經四種等溫模式(Langmuir、Freundlich、Temkin、Dubinin-Radushkevichr)模擬及動力模擬顯示,本研究之吸附材吸附水中染料RhB符合Freundlich吸附平衡模式及擬二階動力反應式。本研究完成之環境材料,其改質時間較短且程序簡單,應用於水中污染物去除效果及再生性均佳,可稱為建立一種新型廢棄碳纖維之環境材料。

關鍵字:磷酸、硝酸、廢棄碳纖維、微波改質、吸附、羅丹明B

In this study, microwave heating was used as a quickly method to prepare waste carbon fiber as an environmental adsorption material, and then compared the effect of addition of hydrogen peroxide on the acidification of nitric acid and phosphoric acid to adsorb dye RhB in water.
The results of this study showed that the surface of the carbon fiber modified by different acidifiers and microwave temperatures had irregular surface structures as the temperature increased. When the microwave temperature exceeded 600°C, the oxygen atoms on the surface of the PC series modified by phosphoric acid were significantly increased. Under the same microwave conditions, phosphoric acid was preferred because of the more oxygen-containing functional groups on the surface. The best environmental adsorbent PC600 prepared yield in this study was 20.7%, and its burning loss temperature exceeded 500°C, indicating that the characteristics of the waste carbon fiber could be used to facilitate the regeneration after high temperature heat.
PC600 had the best adsorption capacity at pH=7 at 27°C was 68.91 mg/g. It was shown that the PC600 adsorbent prepared in this study was most beneficial to the adsorption of pollutant RhB under neutral environment. The isothermal experiments showed that the adsorption capacity of PC700 at 57°C could up to 165.91 mg/g. The adsorbents in this study met the Freundlich mode and pseudo-second-order simulation. The modified procedure of this study was simple, both the removal capacity in water and reproducibility were good. It could be called as a new environmental material.

Key words: Phosphoric acid, Nitric acid, Waste carbon fiber, Microwave modification, Adsorption, Rhodamine B
摘要 II
ABSTRACT III
致謝 IV
目錄 V
表目錄 VIII
圖目錄 X
第一章緒論 1
1-1研究源起 1
1-2研究動機與目的 2
1-3研究流程 3
第二章文獻回顧 4
2-1 染料介紹 4
2-1-1 染料概述 4
2-1-2 玫瑰紅B (RhB) 介紹 4
2-1-3 廢水中染料之處理方法 6
2-2 碳纖維介紹 7
2-2-1 碳纖維種類 7
2-2-2 碳纖維特性及應用 7
2-2-3 廢棄碳材再利用 8
2-3 改質技術介紹 10
2-3-1 微波介紹及理論 10
2-3-2 化學活化法介紹 12
2-3-3 磷酸、硝酸及過氧化氫活化法介紹 13
2-4吸附理論及模式 19
2-4-1 等溫吸附模式 19
2-4-2 動力吸附模式 27
第三章實驗方法 31
3-1使用藥品及儀器設備 33
3-2物性分析 34
3-2-1多功能超高解析場發射型掃描式電子顯微鏡(SEM) 34
3-2-2 比表面積分析儀(BET) 35
3-2-3 熱重損失分析儀(TGA) 36
3-2-4 傅立葉轉換紅外線光譜儀(FTIR) 37
3-3實驗方法 38
3-3-1 廢棄碳纖維活化程序 38
3-3-2預實驗設計 40
3-3-3 pH吸附實驗 41
3-3-4等溫吸附實驗 42
3-3-5動力吸附實驗 43
3-4 樣品分析之品保品管(QA/QC) 44
3-4-1 pH分析之品保品管 44
3-4-2 染料RhB濃度分析之品保品管 44
第四章 結果與討論 48
4-1 基本物化特性分析 49
4-1-1吸附劑命名 49
4-1-2 吸附材製備率 50
4-1-3 場發射型掃描式電子顯微鏡(SEM) 52
4-1-4 元素分析(EDS) 65
4-1-5傅立葉轉換紅外線光譜儀(FTIR) 67
4-1-6 熱重損失分析(TGA) 69
4-2碳纖維吸附實驗 70
4-2-1 pH效應 70
4-2-2硝酸改質及磷酸改質成效差異探討 71
4-2-3等溫吸附實驗及模擬探討 74
4-2-4動力吸附實驗及模擬探討 91
第五章結論與建議 94
5-1結論 94
5-2建議 96
參考文獻 97
英文文獻 97
中文文獻 108
附錄 109
A各PH值檢量線 109
B 樣品比表面積數值表 111
C EDS偵測範圍 112
D 預實驗吸附數據 116
E PH效應實驗吸附數據 117
F 等溫實驗吸附數據 119
G動力實驗吸附數據 129
Aljeboree, A.M., Alshirifi, A.N. and Alkaim, A.F., “Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon,” Arabian Journal of Chemistry, vol. 10, pp. S3381-S3393, 2017.

Araújo, C.S.T., Almeida, L.L.S., Rezende, H.C., Marcionilio, S.M.L.O., Léon, J.J.L. and de Matos, T.N., “Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms,” Microchemical Journal, vol. 137, pp. 348-354, 2018.

AzharulIslam, M., Ahmed, M.J., Khanday, W.A., Asif, M. and Hameed, B.H., “Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal,” Ecotoxicology and Environmental Safety, vol. 138, pp. 279-285, 2017.

Baddi, S. and Palanisamy, A., “Thermal and ultrasound induced gelation of bis(acyl-semicarbazides)—Investigations on the anion tuning and dye adsorbing properties of their gels,” Sensors and Actuators B: Chemical, vol. 245, pp. 711-719, 2017.

Chen, J.P. and Zhu, X.S., “Magnetic solid phase extraction using ionic liquid-coated core–shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples,” Food Chemistry, vol. 200, pp. 10-15, 2016.

Cheng, Z.L., Li, Y.X. and Liu, Z.,“Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio,” Ecotoxicology and Environmental Safety, vol. 148, pp. 585-592, 2018.

Danish, M., Ahmad, T., Hashim, R., Said, N., Akhtar, M.N., Mohamad-Saleh, J. and Sulaiman, O., “Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye,” Surfaces and Interfaces, vol. 11, pp. 1-13, 2018.

Dimpe, K.M., Mpupa, A. and Nomngongo, P.N., “Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 188, pp. 341-348, 2018.

Das, T.R., Patra, S., Madhuri, R. and Sharma, P.K., “Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes,” Journal of Colloid and Interface Science, vol. 509, pp. 82-93, 2018.

Freundlich, H.M.F, “Over the adsorption in solution,” Journal of Physical Chemistry, vol. 57, pp. 385-471, 1906.

Gao, B., Zhou, H., Chen, D. and Yang, J., “Porous carbon with small mesoporesas an ultra-high capacity adsorption medium,” Applied Surface Science, vol. 420, pp. 535-541, 2017.

Gautam, P.K., Gautam, R.K., Banerjee, S., Lofrano, G., Sanroman, M.A., Chattopadhyaya, M.C. and Pandey, J.D., “Preparation of activated carbon from Alligator weed (Alternenthera philoxeroids) and its application for tartrazine removal: Isotherm, kinetics and spectroscopic analysis,” Journal of Environmental Chemical Engineering, vol. 3, pp. 2560-2568, 2015.

Gangupomu, R.H., Sattler, M.L. and Ramerirez, D., “Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities,” Journal of Hazardous Materials, vol. 302, pp. 362-374, 2016.

Gokce, Y. and Aktas, Z., “Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol,” Applied Surface Science vol. 313, pp. 352-359, 2014.

Hameed, K.S., Muthirulan, P. and Sundaram, M.M., “Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies,” Arabian Journal of Chemistry, vol. 10, pp. S2225-S2233, 2017.

He, J., Li, J., Du, W., Han, Q., Wang, Z. and Li, M., “A mesoporous metal-organic framework: Potential advances in selective dye adsorption,” Journal of Alloys and Compounds, vol. 750, pp. 360-367, 2018.

Hesas, R.H., Daud, W.M.A.W., Sahu, J.N. and Arami-Niya, A., “The effects of a microwave heating method on the production of activated carbon from agricultural waste A review,” Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 1-11, 2013.

Holmes, M., “Global carbon fibre market remains on upward trend,” Reinforced Plastics, vol. 58, pp. 38-45, 2014.

Huang, J., Wu, M., Chen, J., Liu, X., Chen, T., Wen, Y., Tang, J. and Xie, Z., “Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass,” Journal of Hazardous Materials, vol. 299, pp. 158-164, 2015.

Jain, R., Mathur, M., Sikarwar, S. and Mittal, A., “Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments,” Journal of Environmental Management, vol. 85, pp. 956-964, 2007.

Jang, E., Choi, S.W., Hong, S.M., Shin, S. and Lee, K.B., “Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation,” Applied Surface Science, vol. 429, pp. 62-71, 2018.

Jethave, G., Fegade, U., Attarde, S. and Ingle, S., “Facile synthesis of Lead Doped Zinc-Aluminum Oxide Nanoparticles (LD-ZAO-NPs) for efficient adsorption of anionic dye: Kinetic, isotherm and thermodynamic behaviors,” Journal of Industrial and Engineering Chemistry, vol. 53, pp. 294-306, 2017.

Kakarndee S., and Nanan, S., “SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye,” Journal of Environmental Chemical Engineering, vol. 6, pp. 74-94, 2018.

Kaveeshwar, A.R., Ponnusamy, S.K., Revellame, E.D., Gang, D.D., Zappi, M.E. and Subramaniam, R., “Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies,” Process Safety and Environmental Protection, vol. 114, pp. 107-122, 2018.

Kazak O., Eker, Y.R., Bingol, H. and Tor, A., “Preparation of activated carbon from molasses-to-ethanol process waste vinasse and its performance as adsorbent material,” Bioresource Technology, vol. 241, pp. 1077-1083, 2017.

Khan, E.A., S. and Khan, T.A., “Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies,” Journal of Molecular Liquids, vol. 249, pp. 1195-1211, 2018.

Kumar, M. and Tamilarasan, R., “Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon,” Arabian Journal of Chemistry, vol. 10, pp. S1567-S1577, 2017. 

Kumar, P.S., Varjani, S.J. and Suganya, S., “Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling,” Bioresource Technology, vol. 250, pp. 716-722, 2018.

Kwiatkowski, M. and Broniek, E., “An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 529, pp. 443-453, 2017.

Kyzas, G.Z., Yue, Q., Lazaridis, N.K. and Deliyanni, E.A., “Oxidation time effect of activated carbons for drug adsorption,” Chemical Engineering Journal, vol. 234, pp. 491-499, 2013.

Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, pp. 1361-1403, 1918.

Lefeuvre, A., Garnier, S., Jacquemin, L., Pillain, B. and Sonnemann, G., “Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050,” Resources, Conservation and Recycling, vol. 125, pp. 264-272, 2017.

Li, C., Zhang, L., Xia, H., Peng, J., Zhang, S., Cheng, S. and Shu, J., “Kinetics and isotherms studies for congo red adsorption on mesoporous Eupatorium adenophorum-based activated carbon via microwave-induced H3PO4 activation,” Journal of Molecular Liquids, vol. 224, pp. 737-744, 2016. 

Liu, X., He, C., Yu, X., Bai, Y., Ye, L., Wang, B. and Zhang, L., “Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption,” Powder Technology, vol. 326, pp. 181-189, 2018.

Mahmood, T., Ali, R., Naeem, A., Hamayun, M. and Aslam, M., “Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology,” Process Safety and Environmental Protection, vol. 109, pp. 548-563, 2017.

Manap, N.R.A., Shamsudin, R., Maghpor, M.N., Hamid, M.A.A. and Jalar, A., “Adsorption isotherm and kinetic study of gas-solid system of formaldehyde on oil palm mesocarp bio-char: Pyrolysis effect,” Journal of Environmental Chemical Engineering, vol. 6, pp. 970-983, 2018.

Mashhadi, S., Sohrabi, R., Javadian, H., Ghasemi, M., Tyagi, I., Agarwal, S. and Gupta, V.K., “Rapid removal of Hg (II) from aqueous solution by rice straw activated carbon prepared by microwave-assisted H2SO4 activation: Kinetic, isotherm and thermodynamic studies,” Journal of Molecular Liquids, vol. 215, pp. 144-153, 2016.

Perez-Ameneiro, M., Vecino, X., Cruz, J.M. and Moldes, A.B., “Physicochemical study of a bio-based adsorbent made from grape marc,” Ecological Engineering, vol. 84, pp. 190-193, 2015.

RekhaKrishnan, G., Radhika, R., Jayalatha, T., Jacob, S., Rajeev, R., George, B.K. and Anjali, B.R., “Removal of perchlorate from drinking water using granular activated carbon modified by acidic functional group: Adsorption kinetics and equilibrium studies,” Process Safety and Environmental Protection, vol. 109, pp. 158-171, 2017.

Rwiza, M.J., Oh, S.Y., Kim, K.W. and Kim, S.D., “Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania,” Chemosphere, vol. 195, pp. 135-145, 2018.

Sangon, S., Hunt, A.J., Attard, T.M., Mengchang, P., Ngernyen, Y. and Supanchaiyamat, N., “Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal,” Journal of Cleaner Production, vol. 172, pp. 1128-1139, 2018.

Shin, S., Jang, J., Yoon, S.H., and Mochida, I.,“A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR,”Carbon, vol. 35, pp. 1739-1743, 1997.

Siddiqui, S.H., “The removal of Cu2+, Ni2+ and Methylene Blue (MB) from aqueous solution using Luffa Actangula Carbon: Kinetics, thermodynamic and isotherm and response methodology,” Groundwater for Sustainable Development, vol. 6, pp. 141-149, 2018.

Siddiqui, S.H. and Ahmad, R., “Pistachio Shell Carbon (PSC) – an agricultural adsorbent for the removal of Pb(II) from aqueous solution,” Groundwater for Sustainable Development, vol. 4, pp. 42-48, 2017.

Silva, T.L., Cazetta, A.L., Souza, P.S.C., Zhang, T., Asefa, T. and Almeida V.C., “Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions,” Journal of Cleaner Production, vol. 171, pp. 482-490, 2018.

Stafussa, A.P., Maciel, G.M., Anthero, A.G.D.S., Silva, M.V.D., Zielinski, A.A.F. and Haminiuk, C.W.I., “Biosorption of anthocyanins from grape pomace extracts by waste yeast: kinetic and isotherm studies,” Journal of Food Engineering, vol. 169, pp. 53-60, 2016.

Sun, Y., Li, H., Li, G., Gao, B., Yue, Q. and Li, X., “Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation,” Bioresource Technology, vol. 217, pp. 239-244, 2016.

Ternero-Hidalgo, J.J., Rosas, J.M., Palomo, J., Valero-Romero, M.J., Rodríguez-Mirasol, J. and Cordero, T., “Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups,” Carbon, vol. 101, pp. 409-419, 2016.

Vu, T.M., Trinh, V.T., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S. and Ngo, H.H., “Removing ammonium from water using modified corncob-biochar,” Science of The Total Environment, vol. 579, pp. 612-619, 2017. 

Wang, C., Jiao, G.S., Li, B.L., Peng, L., Feng, Y., Gao, N. and Li, K.Z., “Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites,” Ceramics International, vol. 43, pp.15122-15132, 2017.

Yakout, S.M., Sharaf El-Deen, G., “Characterization of activated carbon prepared by phosphoric acid activation of olive stones,” Arabian Journal of Chemistry, vol. 9, pp. S1155-S1162, 2016.

Yavuz, R., Akyildiz, H., Karatepe, N. and Cetinkaya, E., “Influence of preparation conditions on porous structures of olive stone activated by H3PO4,” Fuel Processing Technology, vol. 91, pp.80-87, 2010.

Zao, Y., Qi, W., Chen, G., Ji, M. and Zhang, Z., “Behavior of Cr(VI) removal from wastewater by adsorption onto HCl activated Akadama clay,” Journal of the Taiwan Institute of Chemical Engineers, vol. 50, pp. 190-197, 2015.

Zhang, H., Xue, G., Chen, H. and Li, X., “Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment,” Chemosphere, vol. 191, pp. 64-71, 2018.

Zhu, G.Z., Deng, X.L., Hou, M., Sun, K., Zhang, Y.P., Li, P. and Liang, F.M., “Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues,” Fuel Processing Technology, vol. 144, pp. 255-261, 2016.

Zuo, X.J., Liu, Z. and Chen, M.D., “Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar,” Bioresource Technology, vol. 207, pp. 262-267, 2016.

行政院環境保護署,“毒理資料庫”,2017。

何承准,“微波化學法及傳統高溫化學法改質廢棄碳纖維製備吸附材吸附反應性染料RB19”,國立雲林科技大學,環境與安全衛生工程系,碩士論文,2012。

邱怡娟,“乾燥微藻吸附水中金屬鉬之熱力學研究”,國立中正大學,地球與環境科學研究所碩士班,碩士論文,2017。

金屬材料專業知識服務系統,“特种纤维——碳纤维——碳纤维的品种——聚丙烯腈基碳纤维”,2013。

高健玲,“微波加熱與微波萃取教學與實驗教材之設計”,國立高雄師範大學,化學系,碩士論文,2002。

孫菀蔆,“微波結合磷酸活化廢棄碳纖維及其吸附水中染料之研究”,國立雲林科技大學,環境與安全衛生工程系,碩士論文,2013。

馬宏祥,“微波消化指南”,MileStone,2011。

陳邵昊,“酸氧化微波法改質廢棄碳纖維及其吸附水中藍色反應性染料之研究”,國立雲林科技大學,環境與安全衛生工程系,碩士論文,2014。

逢甲大學碳纖維產業研究中心,“台灣碳纖維產業的現況”,2015。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔