跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉峰閩
研究生(外文):YEH, FENG-MIN
論文名稱:量熱技術結合熱動力學模型來評估混合在潤滑油中鋰基鹽之熱性能
論文名稱(外文):Calorimetric Techniques Combined Thermokinetic Model to Evaluate the Thermal Performance of Lithium-based Salt Mixed in Lube Oil
指導教授:徐啟銘徐啟銘引用關係李樹華李樹華引用關係
指導教授(外文):SHU, CHI-MINLEE, SHUH-HWA
口試委員:紀人豪劉上豪徐啟銘李樹華
口試委員(外文):JI, REN HAOLIU, SHANG-HAOSHU, CHI-MINLEE, SHUH-HWA
口試日期:2018-06-25
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:機油渦輪增壓引擎熱重分析儀紅外光譜儀黏度測試儀氣相層析質譜儀及多頻道微量熱卡計雙三氟甲烷磺酰亞胺鋰四氟硼酸鋰
外文關鍵詞:Lube oilTurbocharged enginesThermaogravimetry (TG)Fourier transform infrared spectrometry (FTIR)ViscometerGas chromatography–mass spectrometry (GC–MS)Thermal activity monitorⅢ (TAM Ⅲ)Bis(trifluoromethylsulfonyl)amine lithium (LiTFSI)lithium tetrafluoroborate (LiBF4)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
機油自工業革命後受到重視與研究,隨著引擎技術的提升,渦輪增壓引擎的問世使研究人員與廣大民眾對於長效、耐用需求的高度期待,而影響機油性能主要為添加劑種類、比例調配所影響,因此添加劑的成份已成為影響銷售量的一項重要因素。一般來說,機油產品中所使用的各種添加劑組成皆可能會影響到其成品的穩定與性能,研究人員需要不斷的進行反覆測驗與操作來檢視其產品之優劣特性。
本論文主要運用熱重分析儀 (Thermaogravimetry, TG)、紅外光譜儀 (Fourier transform infrared spectrometry, FTIR)、黏度測試儀 (Viscometer)、氣相層析質譜儀 (Gas chromatography–mass spectrometry, GC–MS) 及多頻道微量熱卡計 (Thermal activity monitorⅢ, TAM Ⅲ) 來探討市售長效型機油在經過添加鋰鹽後之熱穩定、熱性能以及耐用性分析,現今機械動力所需之動力引擎朝向高燃燒效率、高性能面向發展,使渦輪引擎已逐漸大量使用於各式動力設備,由於渦輪引擎的使用涉及高溫磨耗之問題,高熱穩定性之機油開始受各大廠牌推寵。本研究先將市售長效型機油添加四氟硼酸鋰與雙三氟甲烷磺酰亞胺鋰之混合物作為樣本進行熱重分析,探討並比較其熱穩定性及熱重損失,使用分析儀器瞭解不同樣品官能基強弱與特定溫度產物分析來判定樣品改質情形,並運用美國材料與試驗協會 (American Society for Testing Materials, ASTM) 各式測驗標準來測得樣品相關性狀參數,以藉此數值來探討濃度、鋰鹽種類的差異性及反應機制,佐以反應熱動力學研究提供未來油品工業於添加劑與性能考量設計之參考依據。

Since the industrial revolution, lube oil have received attention and research during the improvement of engine technology, the advent of turbocharged engines has made researchers and the general public highly expect. However, the impact of oil performance is mainly influenced by the type of additive and proportion, therefore the composition of additives has become an important factor. In general, the composition of various additives used in oil products may affect the stability and performance of their commodity, researchers need to continuously conduct repeated tests and operations to examine the pros and cons of their products.
This study is mainly use Thermaogravimetry (TG), Fourier transform infrared spectrometry (FTIR), Viscometer, Gas chromatography–mass spectrometry (GC–MS), and Thermal activity monitorⅢ (TAM Ⅲ) to investigate the thermal stability, thermal performance, and durability of commercially available long–life oils after adding lithium salts, the power engines required for mechanical power are now facing high combustion efficiency and high–performance development, making turbine engines increasingly used in numerous of power equipment. Due to the use of turbine engines involves high temperature wear, high thermal stability oils are being pushed by major brands. We use Bis(trifluoromethylsulfonyl)amine lithium (LiTFSI) and lithium tetrafluoroborate (LiBF4) as lubricant additives to evaluate the thermal stability and thermal weight loss, determine the sample modification by analytical instruments to understand the strengths of different sample functional groups and specific temperature products, and use the American Society for Testing Materials (ASTM) methods to test and collect related prameters.

摘要 I
ABSTRACT II
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究流程 6
第二章 文獻回顧 7
2.1 機油概述與分類 7
2.1.1 單級機油 7
2.1.2 複級機油 8
2.2 機油質量等級 8
2.2.1 歐洲汽車製造商協會 ACEA 8
2.2.2 美國石油協會 API 8
2.3 機油更換週期 13
2.3.1 日期調整理論 14
2.3.2 車輛行駛路程理論 14
2.4 潤滑性添加劑 15
2.4.1 減摩劑 15
2.4.2 極壓添加劑 17
2.4.3 抗磨添加劑 17
2.5 鋰鹽概述 18
2.6 高等熱分析軟體 (ADVANCED THERMAL ANALYSIS SOFTWARE, AKTS) 19
第三章 實驗設備與方法 23
3.1 實驗樣品 23
3.2 實驗流程 24
3.3 實驗設備及原理 26
3.3.1 熱重分析儀 (Thermogravimetric analyzer, TG) 26
3.3.2 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectrometer, FTIR) 27
3.3.3 多頻道微量熱卡計 (Thermal activity monitor III, TAM III) 28
3.3.4 黏度測試及腐蝕性測試 (Kinematic viscosity and copper strip test) 30
3.3.5 氣相層析/質譜儀 (Gas chromatography/mass spectrometry, GC/MS) 31
3.4 操作流程 33
3.4.1 熱重分析儀實驗流程 33
3.4.2 FTIR實驗流程 33
3.4.3 黏度測試與銅片腐蝕實驗流程 34
3.4.4 多頻道微量熱卡計實驗流程 35
3.4.5 GC/MS 實驗方法 37
第四章 結果與討論 38
4.1 熱重損失分析 38
4.2 昇溫熱重損失 38
4.3 恆溫環境實驗分析 45
4.3.1 不含銅片之雙三氟甲烷磺醯亞胺鋰與四氟硼酸鋰樣品進行TAM III 恆溫研究 45
4.3.2 含銅片之雙三氟甲烷磺醯亞胺鋰與四氟硼酸鋰樣品進行TAM III 恆溫研究 46
4.4 紅外線光譜實驗分析 49
4.5 黏度測試與銅片腐蝕實驗 52
4.6 氣相層析/質譜儀分析結果 55
4.7 熱動力學分析 57
4.7.1 ASTM E698 動力學參數估算 57
4.7.2 Ozawa 動力學估算 61
4.7.3 熱動力學預測 65
第五章 結論與建議 69
5.1 結論 69
5.2 建議 71
第六章 參考文獻 72

1.ACEA, A. European Oil Sequences for Service–Fill Oils: 2012. 2012.
2.Baillargeon, D. J., Bergstra, R. J., Jackson, A., Maxwell, W. L., Johnston, G. J., & Pache, R. A. High Performance engine oil: Google Patents. 2004.
3.Boyd, T. Significance of tests for petroleum products. 1977.
4.Corsico, G., Mattei, L., Roselli, A., & Gommellini, C.Poly (internal olefins). Chemical industires. 1999, 53–62.
5.Deysarkar, A. K. The Bearing Oil Film Thickness of Single and Multi-Grade Oils—Part 1: Experimental Results in a 3.8 L Engine: SAE Technical Paper. 1988.
6.El Naga, H. A., & Salem, A.Testing the thermooxidation of lubricating oils via differential thermal analysis. Journal of thermal analysis. 1987, 32(5), 1401–1413.
7.Fan, M., Liang, Y., Zhou, F., & Liu, W.Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids. Rsc Advances. 2012, 2(17), 6824-6830.
8.Idris, N., Majid, S., Khiar, A., Hassan, M., & Arof, A.Conductivity studies on chitosan/PEO blends with LiTFSI salt. Ionics. 2005, 11(5-6), 375-377.
9.Klamann, D., & Rost, R. Lubricants and related products: synthesis, properties, applications, international standards: Verlag chemie. 1984.
10.Mortier, R. M., Orszulik, S. T., & Fox, M. F. Chemistry and technology of lubricants (Vol. 107115): Springer. 2010.
11.Mosarof, M., Kalam, M., Masjuki, H., Arslan, A., Monirul, I., Ruhul, A., . . . Khuong, L.Analysis of thermal stability and lubrication characteristics of Millettia pinnata oil. Rsc Advances. 2016, 6(84), 81414-81425.
12.Moscow. New Tang Dynasty Television. 2017. http://www.ntdtv.com/xtr/b5/2017/10/06/a1345604.html
13.Nyberg, E., Respatiningsih, C. Y., & Minami, I.Molecular design of advanced lubricant base fluids: hydrocarbon-mimicking ionic liquids. Rsc Advances. 2017, 7(11), 6364-6373.
14.Phillips, W. D., & Rudnick, L.Ashless phosphorus-containing lubricating oil additives. Lubricant additives-chemisty and applications. 2009, 124, 63-121.
15.Pirro, D. M., Webster, M., & Daschner, E. Lubrication Fundamentals, Revised and Expanded: CRC Press. 2016.
16.Reed, P., & Montoya, R.Stop Changing Your Oil. Edmunds. com website, August. 2010.
17.Rudnick, L. R. Lubricant additives: chemistry and applications: CRC press. 2009.
18.Stachowiak, G., & Batchelor, A. W. Engineering tribology: Butterworth-Heinemann. 2013.
19.Taiwan. CTI Television Inc. 2015. https://www.youtube.com/watch?v=DEGLCqcqF7c
20.Vrečer, F., Vrbinc, M., & Meden, A.Characterization of piroxicam crystal modifications. International journal of pharmaceutics. 2003, 256(1), 3-15.
21.Wang, Z., Fingas, M., & Li, K.Fractionation of a light crude oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS, part II. Journal of chromatographic science. 1994, 32(9), 367-382.
22.Whitmore, M., & Wilberforce, J.Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. Journal of loss prevention in the process industries. 1993, 6(2), 95-101.
23.李靜, & 楊慧青.SJ 汽油機油換油標準的修訂. 潤滑油. 2012, 27(5), 60—64.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top