跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張中彥
研究生(外文):CHANG,CHUNG-YEN
論文名稱:電漿法進行表面改質後的3-羥基丁酸酯3-羥基戊酸酯共聚物與聚羥基丁酸酯於生醫材料之應用
論文名稱(外文):Surface modifications of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polyhydroxybutyrate by plasma technology for biomaterial application
指導教授:鄭宇伸王惠民王惠民引用關係
指導教授(外文):CHENG,YU-SHENWANG,HUI-MIN
口試委員:張嘉修周宗翰
口試委員(外文):CHANG,JO-SHUCHOU, TZUNG-HAN
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:35
中文關鍵詞:聚羥基丁酸酯3-羥基丁酸酯和3-羥基戊酸酯共聚物電漿法改質血管內皮生長因子轉化生長因子-β傷口修復
外文關鍵詞:polyhydroxybutyratepoly(3-hydroxybutyrate-co-3-hydroxyvalerate)plasma-modifiedvascular endothelial growth factor (VEGF)transforming growth factor-β (TGF-β)wound healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
聚羥基脂肪酸酯(polyhydroxyalkanoates,PHA),是由微生物細胞體內所大量儲藏當作能源的生物聚脂,目前已經發現其擁有近100多種單體架構,是幾十年間非常熱門且具有發展性的生醫材料,其擁有良好的生物相容性、生物可降解性、可熱加工性、氣體阻隔性、以及類似合成塑料的熱塑性和彈性等優秀的性質,使其做為生醫材料以及近期非常熱門的生物可分解的包裝材料都極其適合,而被大量用於生醫材料以及生物材料發展性的,主要為聚羥基脂肪酸酯中的聚羥基丁酸酯(polyhydroxybutyrate,PHB)和3-羥基丁酸酯和3-羥基戊酸酯的共聚物[poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV],但其缺點是機械性能差及與細胞結合率薄弱,也是目前科學家們想發展聚羥基脂肪酸酯及其聚合物所面臨的最大課題。
在本研究中,把甘油作為碳源,加入丙酸鈉前體,來培養來自活性污泥中的特定菌株Ralstonia eutropha H16使其在體內形成3-羥基丁酸酯和3-羥基戊酸酯的共聚物,通過溶劑鑄造製備的3-羥基丁酸酯和3-羥基戊酸酯的共聚物膜用等離子體(plasma-modified)進行表面改質,近而增加其生物相容性以及細胞貼附率並且改善機械性質不足的問題,並在材料上培養幹細胞,確認其是否能夠做為傷口修復相關的敷料,之後利用傅里葉變換紅外光譜(fourier transform infrared spectrometer,FTIR)和核磁共振光譜學(nuclear magnetic resonance spectroscopy, NMR)分析顯示,發現有官能基的增加,後對改質前後的PHB和PHBV進行表面的水接觸角的角度分析;幹細胞是原始且未特化的細胞其具有容易分化、再生各種組織器官潛在功能的一類細胞,而我們選用的是脂肪幹細胞(adipose-derived stem cells,ASCs),經由MTT assay 測得在聚羥基脂肪酸酯中的聚羥基丁酸酯與3-羥基丁酸酯和3-羥基戊酸酯的共聚物改質前後的細胞生長率比較,並且用酵素免疫分析法(vnzyme-linked immunosorbent assay,ELISA)初步測得血管內皮生長因子(vascular endothelial growth factor,VEGF)和轉化生長因子-β (transforming growth factor-β,TGF-β)的分泌量,最後使用西方墨點法(western blot)和即時聚合酶鏈鎖反應(real-time polymerase chain reaction,全稱quantitative real time polymerase chain reaction,故簡稱qPCR/qRT-PCR), 進而測得與血管內皮生長因子和轉化生長因子-β相關且與傷口修復有關連的蛋白質,驗証本研究的理論。經過種種的驗証及實驗,確實證明經由電漿法進行表面改質的聚羥基脂肪酸酯中的聚羥基丁酸酯和3-羥基丁酸酯和3-羥基戊酸酯的共聚物在生物相容性和機械性質上有相當的增強,並且脂肪幹細胞培養在材料上都有相當好的細胞貼附率,血管內皮生長因子和轉化生長因子-β分泌量測試有明顯增加,ERK and MEK, 也有相對應的表現量;經過等離子體表面改質後的生醫材料能夠改善其生物相容性和機械性質,使聚羥基脂肪酸酯中的聚羥基丁酸酯和3-羥基丁酸酯和3-羥基戊酸酯的共聚物更容易讓脂肪幹細胞增生以及使生長因子分泌更多,進而幫助傷口修復,運用於傷口修復的敷料上。

Polyhydroxyalkanoates (PHA) is a large bioenergy of storage as biopolyester in microbial cells. It has been found that it has nearly 100 kinds of monomer structure, which is very popular to develop biomaterials. It has excellent biocompatibility, biodegradability, hot workability, gas barrier properties, and similarity of synthetic plastics thermoplastic and elasticity and other excellent advantage. This are extremely as biomaterial and very popular of biodegradability packaging materials suitable, and was used for biomaterials and biological materials development. polyhydroxybutyrate (PHB) is one of the PHA and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PHB are widely used in the development of biodegradability materials and biomaterials, but its shortcomings are significantly obvious: poor mechanical properties and weak cell attachment, There disadvantages are the reason for the current scientists to develop PHA, and its polymer is facing the biggest issue.
In this study, glycerol was added as a carbon source to the sodium propionate precursor for the production of PHBV from the designated strain ralstoniaeutropha H16 in activated sludge, and the PHBV biofilm who is prepared by solvent casting was subjected to plasma-modified surface modification. In addition to increasing its biocompatibility and cell attachment and improving the mechanical properties, it culture on stem cells to confirm whether it can be used as wound repair in the material. The results of Fourier Transform Infrared Spectrometer (FTIR) and nuclear magnetic resonance spectroscopy (NMR) showed that the increase of functional groups was found, the angle of water contacted the angle of PHB and PHBV before and after surface modification was analyzed;Stem cells are primitive and undifferentiation cells with a class of cells that are susceptible to differentiate and regenerate the potential function of various tissues and organs, and we use adipose-derived stem cells (ASCs) determination by MTT assay in PHB and PHBV before and after surface modification in cell growth rate. The levels of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) were determinate by enzyme-linked immunosorbent assay (ELISA). Finally, we selected some proteins interrelated with TGF-β and VEGF of wound repair that were obtained by western blot and real-time polymerase chain reaction (quantitative real time polymerase chain reaction, qPCR/qRT-PCR.
Based on the results, it is confirmed that PHB and PHBV were successful surface modified by plasma, and it have a considerable enhancement in biocompatibility and mechanical properties, and ADSC culture in the material have very well cell attachment, in the initial TGF-β and VEGF secretion test also significantly increased, further analysis of the proteins interrelated with wound repair of the wound has also very fruitful results, so the material after plasma modification can effectively make cell proliferation and angiogenic growth factors secretion increase which is more suitable for wound repair scaffold.
中文摘要
ABSTRACT
目錄
表目錄
圖目錄
Introduction
Biomaterials
Polyhydroxyalkanoates (PHA)
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV and polyhydroxybutyrate (PHB)
Surface modification
Adipose-derived stem cells
Materials and Methods
Preparation of films - Solvent casting of film
Plasma modification treatment
NMR
FTIR
Surface morphology
Water contact angle
Cell viability of ASCs culture in PHBV and PHB
Experiment of XTT assay to angiogenic growth factors by ASCs culture in PHBV and PHB.
Western blot analysis
Results
NMR Spectral Analysis
FTIR Spectral Analysis
Surface morphology
Contact angle measurements
Cell viability of ASCs culture in PHBV and PHB
Experiment of XTT assay to angiogenic growth factors by ASCs culture in PHBV and PHB.
The protein expression level
Discussion
Conclusion
Reference

MacNeil, S. (2007). "Progress and opportunities for tissue-engineered skin." Nature 445(7130): 874-880.
Bellas, E., M. Seiberg, J. Garlick and D. L. Kaplan (2012). "In vitro 3D Full‐Thickness Skin‐Equivalent Tissue Model Using Silk and Collagen Biomaterials." Macromolecular Bioscience 12(12): 1627-1636.
Lakshmanan, R., U. M. Krishnan and S. Sethuraman (2013). "Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration." Macromolecular Bioscience 13(9): 1119-1134.
Ma, P. X. (2008). "Biomimetic materials for tissue engineering." Advanced Drug Delivery Reviews 60(2): 184-198.
Tibbitt, M. W. and K. S. Anseth (2009). "Hydrogels as extracellular matrix mimics for 3D cell culture." Biotechnology and Bioengineering 103(4): 655-663.
Brett, D. (2008). " A Review of Collagen and Collagen-based Wound Dressings." Wounds: a Compendium of Clinical Research and Practice 20(12): 347-356.
Schneider, A., J. A. Garlick and C. Egles (2008). "Self-assembling peptide nanofiber scaffolds accelerate wound healing." PLoS One 3(1): e1410.
Pardue, E. L., S. Ibrahim and A. Ramamurthi (2008). "Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering." Organogenesis 4(4): 203-214.
Aya, K. L. and R. Stern (2014). "Hyaluronan in wound healing: rediscovering a major player." Wound Repair and Regeneration 22(5): 579-593.
Gómez-Guillén, M., B. Giménez, M. a. López-Caballero and M. Montero (2011). "Functional and bioactive properties of collagen and gelatin from alternative sources: A review." Food Hydrocolloids 25(8): 1813-1827.
Nam, K., T. Kimura, S. Funamoto and A. Kishida (2010). "Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: Controlling the polymer–collagen cross-linking process using an ethanol/water co-solvent." Acta Biomaterialia 6(2): 403-408.
Kodali, A., T. C. Lim, D. T. Leong and Y. W. Tong (2014). "Cell–Microsphere Constructs Formed with Human Adipose‐Derived Stem Cells and Gelatin Microspheres Promotes Stemness, Differentiation, and Controlled Pro‐Angiogenic Potential." Macromolecular Bioscience 14(10): 1458-1468.
Uzbas, F., I. May, A. Parisi, S. Thompson, A. Kaya, A. Perkins and E. Memili (2015). "Molecular physiognomies and applications of adipose-derived stem cells." Stem Cell Reviews and Reports 11(2): 298-308.
Gimble, J. M., A. J. Katz and B. A. Bunnell (2007). "Adipose-derived stem cells for regenerative medicine." Circulation Research 100(9): 1249-1260.
Schäffler, A. and C. Büchler (2007). "Concise review: adipose tissue‐derived stromal cells—basic and clinical implications for novel cell‐based therapies." Stem Cells 25(4): 818-827.
M Gimble, J. and M. E Nuttall (2011). "Adipose-derived stromal/stem cells (ASCs) in regenerative medicine: pharmaceutical applications." Current Pharmaceutical design 17(4): 332-339.
Chang, K.-H., H.-T. Liao and J.-P. Chen (2013). "Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies." Acta Biomaterialia 9(11): 9012-9026.
Jedrzejas, M. J. and R. Stern (2005). "Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis." Proteins: Structure, Function, and Bioinformatics 61(2): 227-238.
Wang, H.-M., Y.-T. Chou, Z.-H. Wen, Z.-R. Wang, C.-H. Chen and M.-L. Ho (2013). "Novel biodegradable porous scaffold applied to skin regeneration." PLoS One.
Rault, I., V. Frei, D. Herbage, N. Abdul-Malak and A. Huc (1996). "Evaluation of different chemical methods for cros-linking collagen gel, films and sponges." Journal of Materials Science: Materials in Medicine 7(4): 215-221.
Chen, C.-Y., C.-C. Chiu, C.-P. Wu, Y.-T. Chou and H.-M. Wang (2013). "Enhancements of skin cell proliferations and migrations via 6-dehydrogingerdione." Journal of Agricultural and Food Chemistry 61(6): 1349-1356.
Kretlow, J. D., Y.-Q. Jin, W. Liu, W. J. Zhang, T.-H. Hong, G. Zhou, L. S. Baggett, A. G. Mikos and Y. Cao (2008). "Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells." BMC cell biology 9(1): 60.
Kuo, Y.-R., C.-T. Wang, J.-T. Cheng, F.-S. Wang, Y.-C. Chiang and C.-J. Wang (2011). "Bone marrow–derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes." Plastic and Reconstructive Surgery 128(4): 872-880.
Vojtaššák, J., L. Danišovič, M. Kubeš, D. Bakoš, L. Jarabek, M. Uličná and M. Blaško (2006). "Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot." Neuroendocrinology Letters 27(supplement 2): 134-137.
Khorasani, M.T.; Mirzadeh, H. (2004). “BHK cells behaviour on laser treated polydimethylsiloxane surface.” Coll. Surf. B Biointerf. 35, 67–71.
P.H. Li, Y.P. Chiu, C.C. Shih, Z.H. Wen, Laura Kaodichi Ibeto, S.H. Huang, C.C. Chiu, D.L. Ma, C.H. Leung, Y.N. Chang, H.M. Wang (2016) Biofunctional activities of Equisetum ramosissimum extract: protective effects against oxidation, melanoma, and melanogenesis, Oxidative Medicine and Cellular Longevity
N.F. Chen, W.F. Chen, C.S. Sung, C.H. Lu, C.L. Chen, H.C.Hung, C.W. Feng, C.H. Chen, K.H. Tsui, H.M. Ku, H.M. Wang, Z.H. Wen, S.Y. Huang (2016) Contributions of p38 and ERK to the antinociceptive effects of TGF-β1 in chronic constriction injury-induced neuropathic rats, Journal of Headache and Pain
Doi, Y., Kunioka, M., Nakamura, Y., and Soga, K. (1986). “Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16.” Macromolecules, 19, 2860-2864.
Chen, C. W., Don, T. R., & Yen, H. F. (2006). “Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei process.” Biochemical Engineering, 41, 2289–2296.
Kansiz, M., Domínguez-Vidal, A., McNaughton, D., & Lend, B. (2007). “Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallization of polyhydroxyalkanoates (PHAs).” Analytical and Bioanalytical Chemistry, 388, 1207–1213.
Sin, M. C., Ping Tan, I. K., Mohd Annuar, M. S., & Gan, S. N. (2011). “Characterization of oligomeric hydroxyalkanoic acids from thermal decomposition of palm kernel oil–based biopolyester.” International Journal of Polymer Analysis and Characterization, 16, 337–347.
Athanasiou KA, Agrawal CM. Barber FA, Burkhart SS. (1998). "Orthopaedic applications for PLA-PGA biodegradable polymers", Arthroscopy, 14(7), 726-737
Middleton J. C., Tipton A. J., (2000). “Synthetic biodegradable polymers as orthopedic devices”, Biomaterials, 21, 2335-2346.
Steinbuchel, A., and Valentin, H. E. (1995). “Diversity of bacterial polyhydroxyalkanoic acids”, FEMS Microbiology Letters, 128, 219-228.
Paulo C. Lemos, Luísa S. Serafim, Maria A.M. Reis., (2006) “Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding”, Journal of Biotechnology, 122, 226-238.
Yildirim ED, Ayan H, Vasilets VN, Fridman A, Guceri S, Sun W., (2008) ” Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly(epsilon-caprolactone) scaffolds.”, Plasma Processes Polym, 5, 58–66.
Chong MSK, Lee CN, Teoh SH., (2007) "Characterization of smooth muscle cells on poly(e-caprolactone) films.", Mater Sci Eng ,27, 309–312.
Lee HU, Jeong YS, Jeong SY, Park SY, Bae JS, Kim HG, Cho CR., (2008) "Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly epsilon-caprolactone film.", Appl Surf Sci, 254, 5700–5705.
Ferreira BMP, Pinheiro LMP, Nascente PAP, Ferreira MJ, Duek EAR., (2009) "Plasma surface treatments of poly(L-lactic acid) (PLLA) and poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV).", Mater Sci Eng, 29, 806–813.
Borcia G, Brown NMD., (2007) "Hydrophobic coatings on selected polymers in an atmospheric pressure dielectric barrier discharge.", J Phys D: Appl Phys, 40, 1927–1936.
Heyse P, Dams R, Paulussen S, Houthofd K, Janssen K, Jacobs PA, Sels BF., (2007) "Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input.", Plasma Processes Polym, 4, 145–157.
Inagaki N, Narushima K, Tsutsui Y, Ohyama Y., (2002) "Surface modification and degradation of poly(lactic acid) films by Ar-plasma.", J Adhes Sci Technol, 16, 1041–1054.
Valappil, S. P., Rai, R., Bucke, C., & Roy, I. (2008). “Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved.” Applied Microbiology, 104, 1624–1635.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top