1.C Philibert, 2005, The present and future use of solar thermal energy as a primary source of energy. International Energy Agency.
2.NREL, 2017, Research cell efficiency records,. http://www.nrel.gov/pv/.
3.M Liu, MB Johnston, and HJ Snaith, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. Vol. 501, 7467 p. 395-8.
4.Z Song, SC Watthage, AB Phillips, and MJ Heben, 2016, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy. Vol. 6, 2 p. 022001.
5.J Burschka, N Pellet, SJ Moon, R Humphry-Baker, P Gao, MK Nazeeruddin, and M Grätzel, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. Vol. 499, 7458 p. 316-9.
6.A Kojima, K Teshima, Y Shirai, and T Miyasaka, 2009, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. Vol. 131, p. 6050-6051.
7.HS Kim, CR Lee, JH Im, KB Lee, T Moehl, A Marchioro, SJ Moon, R Humphry-Baker, JH Yum, JE Moser, M Grätzel, and NG Park, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports. Vol. 2, p. 591.
8.D Liu and TL Kelly, 2013, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics. Vol. 8, 2 p. 133-138.
9.D Bi, G Boschloo, S Schwarzmüller, L Yang, EMJ Johansson, and A Hagfeldt, 2013, Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. Vol. 5, 23 p. 11686-91.
10.MM Lee, J Teuscher, T Miyasaka, TN Murakami, and HJ Snaith, 2012, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science. Vol. 338, 6107 p. 643-647.
11.J Seo, S Park, YC Kim, NJ Jeon, JH Noh, SC Yoon, and SI Seok, 2014, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science. Vol. 7, p. 2642-2646
12.JH Im, CR Lee, JW Lee, SW Park, and NG Park, 2011, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. Vol. 3, 10 p. 4088-93.
13.J You, Z Hong, YM Yang, Q Chen, M Cai, TB Song, CC Chen, S Lu, Y Liu, H Zhou, and Y Yang, 2014, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano. p. 1674–1680.
14.MA Green, A Ho-Baillie, and HJ Snaith, 2014, The emergence of perovskite solar cells. Nature Photonics. Vol. 8, 7 p. 506-514.
15.H Zhou, Q Chen, G Li, S Luo, T Song, HS Duan, Z Hong, J You, Y Liu, and Y Yang, 2014, Interface engineering of highly efficient perovskite solar cells. Science. Vol. 345, 6196 p. 542-546.
16.WS Yang, JH Noh, NJ Jeon, YC Kim, S Ryu, J Seo, and SI Seok, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. Vol. 348, 6240 p. 1234-1237.
17.JH Im, IH Jang, N Pellet, M Grätzel, and NG Park, 2014, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology. Vol. 9, 11 p. 927-32.
18.Q Chen, H Zhou, Z Hong, S Luo, HS Duan, HH Wang, Y Liu, G Li, and Y Yang, 2014, Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society. Vol. 136, 2 p. 622-5.
19.NJ Jeon, JH Noh, YC Kim, WS Yang, S Ryu, and SI Seok, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials. Vol. 13, 9 p. 897-903.
20.JH Heo, DH Song, HJ Han, SY Kim, JH Kim, D Kim, HW Shin, TK Ahn, C Wolf, TW Lee, and SH Im, 2015, Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials. Vol. 27, 22 p. 3424-30.
21.PW Liang, CY Liao, CC Chueh, F Zuo, ST Williams, XK Xin, J Lin, and AKY Jen, 2014, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials. Vol. 26, 22 p. 3748-54.
22.W Li, J Fan, J Li, Y Mai, and L Wang, 2015, Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society. Vol. 137, 32 p. 10399-405.
23.M Xiao, F Huang, W Huang, Y Dkhissi, Y Zhu, DJ Etheridge, A Gray-Weale, U Bach, YB Cheng, and L Spiccia, 2014, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition. Vol. 53, 37 p. 9898-903.
24.JY Jeng, YF Chiang, MH Lee, SR Peng, TF Guo, P Chen, and TC Wen, 2013, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials. Vol. 25, 27 p. 3727-32.
25.Z Xiao, C Bi, Y Shao, Q Dong, Q Wang, Y Yuan, C Wang, Y Gao, and J Huang, 2014, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science. Vol. 7, 8 p. 2619-2623.
26.H Zhang, H Azimi, Y Hou, T Ameri, T Przybilla, E Spiecker, M Kraft, U Scherf, and CJ Brabec, 2014, Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials. Vol. 26, 18 p. 5190-5193.
27.CY Chang, WK Huang, YC Chang, KT Lee, and CT Chen, 2016, A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A. Vol. 4, p. 640-648.
28.JY Jeng, KC Chen, TY Chiang, PY Lin, TD Tsai, YC Chang, and TF Guo, 2014, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Advanced Materials. Vol. 26, 24 p. 4107-13.
29.S Ye, W Sun, Y Li, W Yan, H Peng, Z Bian, Z Liu, and C Huang, 2015, CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Letters. Vol. 15, 6 p. 3723-8.
30.L Hu, W Wang, H Liu, J Peng, H Cao, G Shao, Z Xia, W Ma, and J Tang, 2015, PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. Journal of Materials Chemistry A. Vol. 3, 2 p. 515-518.
31.J You, L Meng, TB Song, TF Guo, YM Yang, WH Chang, Z Hong, H Chen, H Zhou, Q Chen, Y Liu, ND Marco, and Y Yang, 2016, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology. Vol. 11, 1 p. 75-81.
32.Z Wu, S Bai, J Xiang, Z Yuan, Y Yang, W Cui, X Gao, Z Liu, Y Jin, and B Sun, 2014, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale. Vol. 6, 18 p. 10505-10.
33.X Huang, K Wang, C Yi, T Meng, and X Gong, 2015, Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer. Advanced Energy Materials. Vol. 6, 3 p. 1501773.
34.DB Kim, JC Yu, YS Nam, DW Kim, ED Jung, SY Lee, S Lee, JH Park, AY Lee, BR Lee, DD Nuzzo, RH Friend, and MH Song, 2016, Improved performance of perovskite light-emitting diodes using a PEDOTPSS and MoO3 composite layer. Journal of Materials Chemistry C. Vol. 4, p. P.8161-8165
35.ZK Wang, M Li, DX Yuan, XB Shi, H Ma, and LS Liao, 2015, Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Applied Materials & Interfaces. Vol. 7, 18 p. 9645-51.
36.Y Jiang, C Li, H Liu, R Qin, and H Ma, 2016, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. Journal of Materials Chemistry A. Vol. 4, 25 p. 9958-9966.
37.H Luo, X Lin, X Hou, L Pan, S Huang, and X Chen, 2017, Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer. Nano-Micro Letters. Vol. 9, 4.
38.D Liu, Y Li, J Yuan, Q Hong, G Shi, D Yuan, J Wei, C Huang, J Tang, and M K Fung, 2017, Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT PSS hole transport layers. Journal of Materials Chemistry A. Vol. 5, p. 5701-5708
39.TC Tsai, HC Chang, CH Chen, YC Huang, and WT Whang, 2014, A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Organic Electronics. Vol. 15, 3 p. 641-645.
40.Q Wang, CC Chueh, M Eslamian, and AKY Jen, 2016, Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & Interfaces. Vol. 8, 46 p. 32068-32076.
41.J Huang, K Wang, J Chang, YY Jiang, QS Xiao, and Y Li, 2017, Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT PSS as a hole extraction layer. Journal of Materials Chemistry A. Vol. 5, p. 13817-13822
42.M Hu, J Gao, Y Dong, K Li, G Shan, S Yang, and RKY Li, 2012, Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir. Vol. 28, 18 p. 7101-6.
43.王政棠, 2015, 銀絲透明導電膜應用於染料敏化太陽能電池之研究. 國立雲林科技大學,碩士論文.44.A Dualeh, N Tétreault, T Moehl, P Gao, MK Nazeeruddin, and M Grätzel, 2014, Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells. Advanced Functional Materials. Vol. 24, 21 p. 3250-3258.
45.A Kim, H Lee, HC Kwon, HS Jung, NG Park, S Jeong, and J Moon, 2016, Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale. Vol. 8, p. 6308-6316.