跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程芊睿
研究生(外文):Cheng, Chien-Jui
論文名稱:奈米銀絲於鈣鈦礦太陽能電池電洞傳輸層之研究
論文名稱(外文):Incorporating Silver Nanowires into Hole Transport Layers of Perovskite Solar Cells
指導教授:劉博滔
指導教授(外文):Liu, Bo-Tau
口試委員:周學韜張志宇
口試委員(外文):Chou, Hsueh-TaoChang, Chih-Yu
口試日期:2018-01-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:反式鈣鈦礦太陽能電池電洞傳輸層奈米銀絲溴化十六烷基三甲銨
外文關鍵詞:Inverted perovskite solar cellhole transport layerSilver Nanowireshexadecyl trimethyl ammonium bromide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以多元醇合成法合成的奈米銀絲(AgNWs),平均長度大約為20 μm,直徑為20~30 nm,AgNWs具有良好的電子傳輸性能,將AgNWs添加至聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS)中作為電洞傳輸層,以提高電洞的提取與傳遞,搭配溴化十六烷基三甲銨(CTAB)摻雜於[6,6]-苯基-碳61-丁酸甲酯(PCBM)作為陰極修飾,製作鈣鈦礦太陽能電池。實驗結果顯示,AgNWs應用於鈣鈦礦太陽能電池之電洞傳輸層,可以有效提升反式鈣鈦礦太陽能電池之光電轉換效率。AgNWs混摻可以增加電子傳遞,使介面阻力降低,減少電子電洞重組損失,使短路電流(Jsc)大幅提高。然而,過多AgNWs摻雜使鈣鈦礦層中的鹵素離子破壞AgNWs形成鹵化銀相,以至與基材的附著力變差,產生的缺陷導致效率下降。在最佳電池製作條件(0.508 wt% AgNWs)下,光電轉換效率從11.37%提升至14.25%,提高25%光電轉換效率。

關鍵字: 反式鈣鈦礦太陽能電池、電洞傳輸層、奈米銀絲、溴化十六烷基三甲銨

In this study, silver nanowires (AgNWs) with a length of ~20 μm and a diameter of 20-30 nm were synthesized by the polyol reduction method. The AgNWs featuring good electron transport properties were added in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve conductivity and enhance extraction and transport of holes. Combined with a electron transport layer of hexadecyl trimethyl ammonium bromide doped [6,6]-phenyl-C61-butyric acid methyl ester, the AgNWs/PEDOT:PSS was applied as a hole transport layer for inverted perovskite solar cells. Experimental results showed that incorporating AgNWs into PEDOT: PSS as the hole transport layer can effectively enhance the power conversion efficiency (PCE) of the inverted perovskite solar cells. AgNW incorporation can increase electron transfer and minimize interfacial resistance, which can reduce electron-hole recombination and greatly increase short circuit current (Jsc). However, over AgNW incorporation may lead to poor adhesion with substrates and formation of defects, resulting in the decrease of PCE. Under optimal conditions (incorporation of 0.508 wt% AgNWs), the PCE of the resulting solar cells can increase from 11.37 to 14.25%, improved by 25%. (open-circuit voltage = 0.876 V, short-circuit current = 26.308 mA/cm2, the fill factor = 61.68%)

Keywords: Inverted perovskite solar cell, Hole transport layer, Silver nanowires, hexadecyl trimethyl ammonium bromide

目錄
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
第二章 文獻回顧 5
2.1 鈣鈦礦太陽能電池 5
2.1.1鈣鈦礦太陽能電池結構 5
2.1.2鈣鈦礦太陽能電池原理 7
2.2 鈣鈦礦太陽能電池之文獻 7
2.2.1 製程方法 11
2.2.1.1 一步溶液沉積法 12
2.2.1.2 二步溶液沉積法 12
2.2.1.3熱蒸鍍氣相沉積法 13
2.2.1.4蒸氣輔助溶液法 13
2.2.2溶劑的差異 14
2.2.3反溶劑的差異 17
2.3 反式鈣鈦礦太陽能電池之文獻 20
2.4 改善鈣鈦礦太陽能電池電洞傳輸層之文獻 22
第三章 實驗方法 27
3.1 實驗藥品 27
3.2 儀器設備 29
3.2.1電漿表面清潔機(Plasma Cleaner) 29
3.2.2旋轉塗佈機(Spin-Coating) 29
3.2.3手套箱(Gloves box) 29
3.2.4蒸鍍機(Evaporator) 29
3.2.5太陽光模擬器 (Solar Simulator) 30
3.2.6光電流-電壓量測儀(Source Meter) 30
3.2.7 X光繞射儀(X-ray Diffractometer,XRD) 30
3.2.8紫外光/可見光光譜儀(UV/ Vis spectrophotometer) 31
3.2.9掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 31
3.2.10光學顯微鏡(Optical microscope,OM) 32
3.2.11光致發光光譜(photoluminescence spectroscopy,PL) 32
3.2.12電化學阻抗分析儀(Electrochemical Impedance Spectroscopy,EIS) 32
3.3 實驗方法 34
3.3.1奈米銀絲(AgNWs)合成之步驟 34
3.3.2奈米銀絲離心純化 34
3.3.3 甲基碘化銨(CH3NH3I)合成之步驟 36
3.3.4電池組裝 36
第四章 結果與討論 38
4.1奈米銀絲(AGNWS)特性 38
4.2不同AGNWS濃度應用在PSC上 40
4.2.1 AgNWs摻雜於PEDOT:PSS之鈣鈦礦本質分析 40
4.2.2 AgNWs摻雜於PEDOT:PSS之鈣鈦礦太陽能電池效率影響 44
4.3 PEDOT:PSS電洞層不同厚度應用在鈣鈦礦太陽能電池上 49
第五章 結論 53
參考文獻 54


1.C Philibert, 2005, The present and future use of solar thermal energy as a primary source of energy. International Energy Agency.
2.NREL, 2017, Research cell efficiency records,. http://www.nrel.gov/pv/.
3.M Liu, MB Johnston, and HJ Snaith, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. Vol. 501, 7467 p. 395-8.
4.Z Song, SC Watthage, AB Phillips, and MJ Heben, 2016, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy. Vol. 6, 2 p. 022001.
5.J Burschka, N Pellet, SJ Moon, R Humphry-Baker, P Gao, MK Nazeeruddin, and M Grätzel, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. Vol. 499, 7458 p. 316-9.
6.A Kojima, K Teshima, Y Shirai, and T Miyasaka, 2009, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. Vol. 131, p. 6050-6051.
7.HS Kim, CR Lee, JH Im, KB Lee, T Moehl, A Marchioro, SJ Moon, R Humphry-Baker, JH Yum, JE Moser, M Grätzel, and NG Park, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports. Vol. 2, p. 591.
8.D Liu and TL Kelly, 2013, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics. Vol. 8, 2 p. 133-138.
9.D Bi, G Boschloo, S Schwarzmüller, L Yang, EMJ Johansson, and A Hagfeldt, 2013, Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. Vol. 5, 23 p. 11686-91.
10.MM Lee, J Teuscher, T Miyasaka, TN Murakami, and HJ Snaith, 2012, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science. Vol. 338, 6107 p. 643-647.
11.J Seo, S Park, YC Kim, NJ Jeon, JH Noh, SC Yoon, and SI Seok, 2014, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science. Vol. 7, p. 2642-2646
12.JH Im, CR Lee, JW Lee, SW Park, and NG Park, 2011, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. Vol. 3, 10 p. 4088-93.
13.J You, Z Hong, YM Yang, Q Chen, M Cai, TB Song, CC Chen, S Lu, Y Liu, H Zhou, and Y Yang, 2014, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano. p. 1674–1680.
14.MA Green, A Ho-Baillie, and HJ Snaith, 2014, The emergence of perovskite solar cells. Nature Photonics. Vol. 8, 7 p. 506-514.
15.H Zhou, Q Chen, G Li, S Luo, T Song, HS Duan, Z Hong, J You, Y Liu, and Y Yang, 2014, Interface engineering of highly efficient perovskite solar cells. Science. Vol. 345, 6196 p. 542-546.
16.WS Yang, JH Noh, NJ Jeon, YC Kim, S Ryu, J Seo, and SI Seok, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. Vol. 348, 6240 p. 1234-1237.
17.JH Im, IH Jang, N Pellet, M Grätzel, and NG Park, 2014, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology. Vol. 9, 11 p. 927-32.
18.Q Chen, H Zhou, Z Hong, S Luo, HS Duan, HH Wang, Y Liu, G Li, and Y Yang, 2014, Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society. Vol. 136, 2 p. 622-5.
19.NJ Jeon, JH Noh, YC Kim, WS Yang, S Ryu, and SI Seok, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials. Vol. 13, 9 p. 897-903.
20.JH Heo, DH Song, HJ Han, SY Kim, JH Kim, D Kim, HW Shin, TK Ahn, C Wolf, TW Lee, and SH Im, 2015, Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials. Vol. 27, 22 p. 3424-30.
21.PW Liang, CY Liao, CC Chueh, F Zuo, ST Williams, XK Xin, J Lin, and AKY Jen, 2014, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials. Vol. 26, 22 p. 3748-54.
22.W Li, J Fan, J Li, Y Mai, and L Wang, 2015, Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society. Vol. 137, 32 p. 10399-405.
23.M Xiao, F Huang, W Huang, Y Dkhissi, Y Zhu, DJ Etheridge, A Gray-Weale, U Bach, YB Cheng, and L Spiccia, 2014, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition. Vol. 53, 37 p. 9898-903.
24.JY Jeng, YF Chiang, MH Lee, SR Peng, TF Guo, P Chen, and TC Wen, 2013, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials. Vol. 25, 27 p. 3727-32.
25.Z Xiao, C Bi, Y Shao, Q Dong, Q Wang, Y Yuan, C Wang, Y Gao, and J Huang, 2014, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science. Vol. 7, 8 p. 2619-2623.
26.H Zhang, H Azimi, Y Hou, T Ameri, T Przybilla, E Spiecker, M Kraft, U Scherf, and CJ Brabec, 2014, Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials. Vol. 26, 18 p. 5190-5193.
27.CY Chang, WK Huang, YC Chang, KT Lee, and CT Chen, 2016, A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A. Vol. 4, p. 640-648.
28.JY Jeng, KC Chen, TY Chiang, PY Lin, TD Tsai, YC Chang, and TF Guo, 2014, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Advanced Materials. Vol. 26, 24 p. 4107-13.
29.S Ye, W Sun, Y Li, W Yan, H Peng, Z Bian, Z Liu, and C Huang, 2015, CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Letters. Vol. 15, 6 p. 3723-8.
30.L Hu, W Wang, H Liu, J Peng, H Cao, G Shao, Z Xia, W Ma, and J Tang, 2015, PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. Journal of Materials Chemistry A. Vol. 3, 2 p. 515-518.
31.J You, L Meng, TB Song, TF Guo, YM Yang, WH Chang, Z Hong, H Chen, H Zhou, Q Chen, Y Liu, ND Marco, and Y Yang, 2016, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology. Vol. 11, 1 p. 75-81.
32.Z Wu, S Bai, J Xiang, Z Yuan, Y Yang, W Cui, X Gao, Z Liu, Y Jin, and B Sun, 2014, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale. Vol. 6, 18 p. 10505-10.
33.X Huang, K Wang, C Yi, T Meng, and X Gong, 2015, Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer. Advanced Energy Materials. Vol. 6, 3 p. 1501773.
34.DB Kim, JC Yu, YS Nam, DW Kim, ED Jung, SY Lee, S Lee, JH Park, AY Lee, BR Lee, DD Nuzzo, RH Friend, and MH Song, 2016, Improved performance of perovskite light-emitting diodes using a PEDOTPSS and MoO3 composite layer. Journal of Materials Chemistry C. Vol. 4, p. P.8161-8165
35.ZK Wang, M Li, DX Yuan, XB Shi, H Ma, and LS Liao, 2015, Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Applied Materials & Interfaces. Vol. 7, 18 p. 9645-51.
36.Y Jiang, C Li, H Liu, R Qin, and H Ma, 2016, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. Journal of Materials Chemistry A. Vol. 4, 25 p. 9958-9966.
37.H Luo, X Lin, X Hou, L Pan, S Huang, and X Chen, 2017, Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer. Nano-Micro Letters. Vol. 9, 4.
38.D Liu, Y Li, J Yuan, Q Hong, G Shi, D Yuan, J Wei, C Huang, J Tang, and M K Fung, 2017, Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT PSS hole transport layers. Journal of Materials Chemistry A. Vol. 5, p. 5701-5708
39.TC Tsai, HC Chang, CH Chen, YC Huang, and WT Whang, 2014, A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Organic Electronics. Vol. 15, 3 p. 641-645.
40.Q Wang, CC Chueh, M Eslamian, and AKY Jen, 2016, Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & Interfaces. Vol. 8, 46 p. 32068-32076.
41.J Huang, K Wang, J Chang, YY Jiang, QS Xiao, and Y Li, 2017, Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT PSS as a hole extraction layer. Journal of Materials Chemistry A. Vol. 5, p. 13817-13822
42.M Hu, J Gao, Y Dong, K Li, G Shan, S Yang, and RKY Li, 2012, Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir. Vol. 28, 18 p. 7101-6.
43.王政棠, 2015, 銀絲透明導電膜應用於染料敏化太陽能電池之研究. 國立雲林科技大學,碩士論文.
44.A Dualeh, N Tétreault, T Moehl, P Gao, MK Nazeeruddin, and M Grätzel, 2014, Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells. Advanced Functional Materials. Vol. 24, 21 p. 3250-3258.
45.A Kim, H Lee, HC Kwon, HS Jung, NG Park, S Jeong, and J Moon, 2016, Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale. Vol. 8, p. 6308-6316.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top