|
[1]M. H. Figueiral, A. Azul, E. Pinto, P. A. Fonseca , F. M. Branco, C. Scully, Denture‐related stomatitis: identification of aetiological and predisposing factors–a large cohort. J. Oral Rehabil, 2007; 34.6: 448-455. [2]D. J. Marín Zuluaga, O. C. Gómez Velandia, R. Clauijo, M. Diana, Denture‐related stomatitis managed with tissue conditioner and hard autopolymerising reline material. Gerodontology, 2011; 28.4: 258-263. [3]E. Emami, P. De Grandmont, P. H. Rompré, J. Barbeau, S. Pan, J. S. Feine, Favoring trauma as an etiological factor in denture stomatitis. J. Dent Res, 2008; 87.5: 440-444. [4]A. C. Rodloff, D. Koch, R. Schaumann, Epidemiology and antifungal resistance in invasive candidiasis. Eur J. Med Res, 2011; 16.4: 187. [5]J. Barbeau, J. Séguin, J. P. Goulet, , L. de Koninck, S. L. Avon, B. Lalonde, P. Rompré, N. Deslauriers, Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003; 95.1: 51-59. [6]B. C. Webb, C. J. Thomas, T. Whittle, A 2‐year study of Candida‐associated denture stomatitis treatment in aged care subjects. Gerodontology, 2005; 22.3: 168-176. [7]E. G. Mima, C. E. Vergani, A. L. Machado, E. M. Massucato, A. L. Colombo, V. S. Bagnato, A. C. Pavarina, Comparison of Photodynamic Therapy versus conventional antifungal therapy for the treatment of denture stomatitis: a randomized clinical trial. Clin. Microbiol Infect, 2012; 18.10: E380-E388. [8]T. Pereira-Cenci, A. A. Del Bel Cury, W. Crielaard, J. M. Ten Cate, Development of Candida-associated denture stomatitis: new insights. J. Appl Oral Sci, 2008; 16.2: 86-94. [9]C Kerawala, C Newlands, eds, Oral and maxillofacial surgery. Oxford: Oxford University Press. 2010; 446-447 [10]A. Erdogan, S. S. Rao, Small intestinal fungal overgrowth. Curr Gastroenterol Rep, 2015; 17.4: 16. [11]Y. H. Samaranayake and L. P. Samaranayake, Experimental Oral Candidiasis in Animal Models, Clin Microbiol Rev, 2001; 14: 398-429. [12]C. Salerno, M. Pascale, M. Contaldo, V. Esposito, M. Busciolano, L. Milillo, A. Guida, M. Petruzzi, R. Serpico, Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal, 2011; 16: E139-143. [13]J. R. Naglik, D. L. Moyes, B. Wächtler, B. Hube, Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect, 2011; 13: 963-976. [14]A. A. Lattif and K. Swindell, History of Antifungals. 2009; 1-10. [15]J. R. R. Pinto, M. F. Mesquita, G. E. P. Henriques, M. A. de Arruda Nóbilo, Effect of thermocycling on bond strength and elasticity of 4 long-term soft denture liners. J. Prosthet Dent, 2002; 88.5: 516-521. [16]R.K. Aloul, C. Shen, The influence of plasticizer loss on the viscoelasticity of temporary soft liners. J. Prosthodont, 2002; 11.4: 254-62. [17]D. W. Jones, E. J. Sutow, B. S. Graham, E. L. Milne, and D. E. Johnston, Influence of Plasticizer on Soft Polymer Gelation. J. Dent Res, 1986; 65: 634-642. [18]H. Murata, H. Chimori, T. Hamada, and J. F. McCabe, Viscoelasticity of Dental Tissue Conditioners during the Sol-gel Transition. J. Dent Res, 2005; 84: 376-381. [19]Y. A. M. Ueshige, K. T. Y. Sato, Y. Akagawa, and M. Ishii, Dynamic iscoelastic properties of antimicrobial tissue conditioners. J. Dent, 1999; 27: 517-522. [20]K. S. Kim, H. S. Moon, J. S. Shim, & M. K. Jung, Changes of the surface roughness depending on immersion time and powder/liquid ratio of various tissue conditioners. J. Korean Acad Prosthodont, 2009; 47.2: 108-118. [21]Y. Kulak, E. Kazazoglu, In vivo and in vitro study of fungal presence and growth on three tissue conditioning materials on implant supported complete denture wearers. J. Oral Rehabil, 1998; 25: 135-138. [22]Y. S. DANGI, M. L. SONI, and K. P. NAMDEO, Oral Candidiasis: A Review. Int J. Pharmacy Pharm Sci, 2010; 2: 36-41. [23]C. K. W. Chow, D. W. Matear, and H. P. Lawrence, Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology, 1999; 16: 110-118. [24]L. M.A.O., L. P. Samaranayake, and P. J. Lamey, "Treatment of oral candidiasis," Int. J. Oral Maxillofac. Surg. 1991; 49: 996-1001. [25]Ashley, E. S. D. 12 Pharmacology of Azole Antifungal Agents. Antifungal therapy, 2016; 199. [26]L. J. Cross, J. Bagg, D. Wray, T. Aitchison, A comparison of fluconazole and itraconazole in the management of denture stomatitis a pilot study. J. Dent, 1998; 26: 657-664.
[27]J. F. Lima, J. G. Maciel, C. A. Arrais, V. C. Porto, V. M. Urban, K. H. Neppelenbroek, Effect of incorporating antifungals on the water sorption and solubility of interim resilient liners for denture base relining. J. Prosthet Dent, 2016; 115.5: 611-616. [28]K. Y. Nam, In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J. Adv Prosthodont, 2011; 3.1: 20-24. [29]T. Matsuura, Y. Abe, Y. Sato, K. Okamoto, M. Ueshige, Y. Akagawa, Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J. Dent, 1997; 25.5: 373-377. [30]S. S. Mantri, R. D. Parkhedkar, & S. P. Mantri, Candida colonisation and the efficacy of chlorhexidine gluconate on soft silicone‐lined dentures of diabetic and non‐diabetic patients. Gerodontology, 2013; 30.4: 288-295. [31]Z. Shi, K.G. Neoh, E.T. Kang, W. Wang, Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 2006; 27: 2440-2449. [32]J. Meng, X. Zhang, Z. Tang, Y. Zhang, Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination, 2015; 359: 156-166. [33]N. G. Schipper, S. Olsson, J. A. Hoogstraate, A. G. deBoer, K. M. Varum, P. Artursson, Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res, 1997; 14.7: 923-9. [34]Robert G. Chitin Chemistry London. The Macmillan Press; 1992. [35]R. Jayakumar, M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010; 55.7: 675-709. [36]L. Sun, Y. Du, L. Fan, X. Chen, J. Yang, Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer, 2006; 47.6: 1796-1804. [37]Nilsen-Nygaard, J., Strand, S. P., Vårum, K. M., Draget, K. I., & Nordgård, C. T. Chitosan: gels and interfacial properties. Polymer, 2015; 7.3: 552-579. [38]Y. Abe, M. Ueshige, M. Takeuchi, M. Ishii, Y. Akagawa, Cytotoxicity of antimicrobial tissue conditioners containing silver-zeolite. Int J. Prosthodont, 2003; 16.2. [39]M. Radnai, R. Whiley, T. Friel, P. S. Wright, Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology, 2010; 27: 292-296. [40]S. Akanksha, et al. "Evaluation of the properties of a tissue conditioner containing origanum oil as an antifungal additive." Journal of Prosthetic Dentistry 2013; 110.4: 313-319. [41]S. Sunanda, H. Veena. Comparative evaluation of antifungal activity of melaleuca oil and fluconazole when incorporated in tissue conditioner: an in vitro study. Journal of Prosthodontics, 2014; 23.5: 367-373. [42]Alavarce, et al. The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: new approaches to denture stomatitis. Evidence-Based Complementary and Alternative Medicine, 2015. [43]Jiang, Fuguang, et al. "N‐trimethylchitosan/Alginate Layer‐by‐Layer Self Assembly Coatings Act as “Fungal Repellents” to Prevent Biofilm Formation on Healthcare Materials." Advanced healthcare materials 2015; 4.3: 469-475. [44]Song, Rong, Zhaohua Zhong, and Lexun Lin. "Evaluation of chitosan quaternary ammonium salt-modified resin denture base material." International journal of biological macromolecules 2016; 85: 102-110. [45]C. H. Jou, , Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2, 3-propyl-N methyl-N, N-diallylammonium methyl sulfate. Colloids Surf B Biointerfaces., 2011; 88.1: 448-454. [46]Hu D, Wang H, Wang L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT - Food Science and Technology, 2015; 65: 398-405. [47]H. Wu, J. Zhang, B. Xiao, X. Zan, J. Gao, Y. Wan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan-poly(ɛ-caprolactone) copolymers and their antibacterial activity. Carbohydr. Polym, 2011; 83.2: 824-830. [48]A. Ávila, K. Bierbrauer, G. Pucci, M. López-González, M. Strumia, Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of food engineering, 2012; 109.4: 752-761. [49]L. Zhang, L. Wang, B. Guo, P. X. Ma, Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym, 2014; 103: 110-118. [50]EN ISO 10139-2:2016 Dentistry—Soft Lining Materials for Removable Dentures— Part 2: Materials for Long-Term Use, 2016. [51]H. Murata, H. Chimori, T. Hamada, J. F. McCabe, Viscoelasticity of dental tissue conditioners during the sol-gel transition. J. Dent Res, 2005; 84.4: 376-381. [52]ASTM D638-03, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2003 [53]A. Mese, K. G. Guzel, Effect of storage duration on the hardness and tensile bond strength of silicone-and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. J. Prosthet Dent, 2008; 99.2: 153-159. [54]M. M. Hassan, Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: assessment of mechanical, antibacterial and antifungal properties. RSC Advances, 2015; 5.45: 35497-35505. [55]Song, H. Synthesis and application of cationic starch graft polymer by using the complex initiation system. Carbohydr. Polym, 2010; 82.3: 768-771. [56]Z. X. Peng, L. Wang, L. Du, S. R. Guo, X. Q. Wang, T. T. Tang, Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr. Polym, 2010; 81.2: 275-283. [57]T. C. Yang, K. C. Cheng, C. C. Huang, B. S. Lee, Development of new tissue conditioner using acetyl tributyl citrate and novel hyperbranched polyester to improve viscoelastic stability. Dent. Mater, 2015; 31.6: 695-701.
|