(3.235.108.188) 您好!臺灣時間:2021/02/25 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王仁斈
研究生(外文):WANG, REN-SYUE
論文名稱:以含四級銨鹽基團之幾丁聚醣促進組織調理材抗菌性
論文名稱(外文):Improvement of antifungal properties of tissue conditioners by incorporation of chitosan with quaternary ammonium groups
指導教授:陳國裕
指導教授(外文):CHEN, KUO-YU
口試委員:陳樹人黃智峯
口試委員(外文):CHEN, SHU-JENHUANG, CHIH-FENG
口試日期:2018-01-26
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:幾丁聚醣四級銨鹽組織調理材抗真菌白色念珠菌
外文關鍵詞:chitosanquaternary ammoniumtissue conditionerantifungalCandidad albicans
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
義齒口腔炎的發生通常是因配戴不合適的義齒一段時間後所造成的黏膜發炎,其主要的病源是由白色念珠菌感染所造成的。臨床上常在義齒基底內墊上一層柔軟的組織調理材,來減低傷口的刺激,然而,組織調理材本身不具有效抗菌性,而且白色念珠菌容易附著於組織調理材表面上。本研究利用導入四級銨鹽幾丁聚醣來改善組織調理材對白色念珠菌的抗菌性,首先使用過硫酸銨作為氧化還原反應起始劑,將丙烯醯氧乙基三甲基氯化銨單體接枝共聚合至幾丁聚醣鏈段上,形成四級銨鹽幾丁聚醣,經由傅立葉轉換紅外線光譜儀及核磁共振儀確認單體成功接枝上幾丁聚醣,其接枝率及接枝率分別為21.1%和73.0%,X-射線繞射圖譜顯示接枝單體會降低幾丁聚醣的結晶性。然後將臨床上使用的組織調理材摻混不同量(5%、7.5%及10%)的幾丁聚醣或四級銨鹽幾丁聚醣,來改善組織調理材的抗菌性。實驗結果顯示組織調理材加入幾丁聚醣或四級銨鹽幾丁聚醣後會增加表面親水性、吸水率、溶解率及重量改變率,而且加入的幾丁聚醣或四級銨鹽幾丁聚醣越多,則組織調理材的表面越親水,且吸水率、溶解率及重量改變率越大,而含有親水性四級銨鹽基團的四級銨鹽幾丁聚醣比幾丁聚醣影響更大,但是各種組織調理材的凝膠化時間沒有顯著差異。將組織調理材浸泡水7天後,導入幾丁聚醣或四級銨鹽幾丁聚醣後會降低組織調理材的彈性模數、損耗模數及拉伸強度,但是除了四級銨鹽幾丁聚醣加入量為10%以外,各種組織調理材與壓克力樹脂之間的黏著強度並沒影顯著的差異。抗菌實驗結果顯示組織調理材加入幾丁聚醣或四級銨鹽幾丁聚醣後會降低白色念珠菌數量,而且當四級銨鹽幾丁聚醣加入比例為7.5% 及10%時,可完全殺死白色念珠菌,細胞毒性結果顯示各種組織調理材間沒有顯著的差異,因此四級銨鹽幾丁聚醣合適作為組織調理材之抗菌劑。
Denture stomatitis is often observed in patients who wear ill-fitting dentures for prolonged durations. Candida albicans infection is considered the main etiologic factor. Tissue conditioners are widely used as temporary lining materials for dentures to treat inflamed tissues. However, tissue conditioners do not exert antifungal activity. Moreover, Candida albicans adheres easily to the surface of the tissue conditioners. The aim of this study was to improve the antifungal activity of tissue conditioners by incorporation of quaternary ammonium chitosan (QAC). Firstly, QAC was prepared by grafting polymerization of 2-[(acryloyloxy)ethyl] trimethyl ammonium chloride (AETMAC) onto chitosan (CS) by using ammonium persulfate as a redox initiator. The incorporation of AETMAC into CS chains was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The grafting percentage and grafting efficiency of AETMAC were 21.1% and 73.0%, respectively. The X-ray diffraction pattern displayed that the grafting of AETMAC significantly decreased the crystallinity of CS. Then, various amounts (5%,7.5% and 10%) of CS or QAC were blended with commercially available tissue conditioners to improve their antifungal properties. The experiment result showed that the incorporation of CS and QAC increased the surface hydrophilicity, water absorption, solubility and weight change of tissue conditioners, especially for QAC, because of the hydrophilic property of quaternary ammonium groups. Moreover, the higher the content of CS and QAC, the higher were surface hydrophilicity, water absorption, solubility and weight change. However, there were no significant differences in gel time. After 7 days of soaking in water, the addition of CS and QAC reduced the storage modulus, loss modulus and tensile strength of tissue conditioners. However, except for 10% of QAC, there were no significant difference in the bond strength between the tissue conditioner and acrylic resin. Antifungal activity study showed that a significantly fewer Candida albicans in tissue conditioners modified with CS and QAC, and none when the weight percentage of QAC was 7.5% and 10%. Moreover, QAC had no significant effect on the cytotoxicity of tissue conditioners. Therefore, QAC have the potential as an antifungal agent applied to tissue conditioners.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 序論 1
1-1 義齒 1
1-2 白色念珠菌 1
1-3 組織調理材 3
1-4 藥物治療 4
1-5 幾丁聚醣 5
1-6 研究動機 6
第二章 文獻回顧 8
2-1 組織調理材添加銀及抗菌劑 8
2-2 組織調理材添加天然萃取物作為抗菌劑 9
2-3 義齒基材添加幾丁聚醣作為抗菌劑 10
2-4 含有四級銨鹽基團之幾丁聚醣於抗菌材料的應用 11
2-5 氧化還原接枝聚合 12
第三章 材料與方法 13
3-1 藥品 13
3-2 儀器 14
3-3 實驗步驟 15
3-3-1 幾丁聚醣接枝共聚合丙烯醯氧乙基三甲基氯化銨 15
3-3-2 組織調理材製備 17
3-3-3 義齒基材製備 18
3-4 材料組成與結構分析 19
3-4-1 傅立葉轉換紅外線光譜儀檢測 19
3-4-2 核磁共振結構分析 19
3-4-3 接枝率及接枝效率 19
3-4-4 X-射線繞射儀分析 19
3-5 組織調理材特性測試 20
3-5-1 水接觸角量測 20
3-5-2 吸水率、溶解率和重量變化率測定 20
3-5-3 凝膠化時間檢測 21
3-5-4 動態黏彈性分析 21
3-5-5 拉伸強度測試 22
3-5-6 黏著強度測試 22
3-6 抗菌實驗 23
3-7 細胞毒性測試 24
第四章 結果與討論 26
4-1 含四級銨鹽之幾丁聚醣組成與結構分析 26
4-1-1 化學組成鑑定 26
4-1-2 接枝率及接枝效率測定 28
4-1-3 結晶結構分析 28
4-2 組織調理材之特性分析 29
4-2-1 水接觸角 29
4-2-2 吸水率 30
4-2-3 溶解率 31
4-2-4 重量變化率 32
4-2-5 凝膠化時間 33
4-2-6 動態黏彈性 34
4-2-7 拉伸強度 36
4-2-8 黏著強度 37
4-3 抗菌性 38
4-4 細胞毒性 39
第五章 結論 40
參考文獻 41


[1]M. H. Figueiral, A. Azul, E. Pinto, P. A. Fonseca , F. M. Branco, C. Scully, Denture‐related stomatitis: identification of aetiological and predisposing factors–a large cohort. J. Oral Rehabil, 2007; 34.6: 448-455.
[2]D. J. Marín Zuluaga, O. C. Gómez Velandia, R. Clauijo, M. Diana, Denture‐related stomatitis managed with tissue conditioner and hard autopolymerising reline material. Gerodontology, 2011; 28.4: 258-263.
[3]E. Emami, P. De Grandmont, P. H. Rompré, J. Barbeau, S. Pan, J. S. Feine, Favoring trauma as an etiological factor in denture stomatitis. J. Dent Res, 2008; 87.5: 440-444.
[4]A. C. Rodloff, D. Koch, R. Schaumann, Epidemiology and antifungal resistance in invasive candidiasis. Eur J. Med Res, 2011; 16.4: 187.
[5]J. Barbeau, J. Séguin, J. P. Goulet, , L. de Koninck, S. L. Avon, B. Lalonde, P. Rompré, N. Deslauriers, Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003; 95.1: 51-59.
[6]B. C. Webb, C. J. Thomas, T. Whittle, A 2‐year study of Candida‐associated denture stomatitis treatment in aged care subjects. Gerodontology, 2005; 22.3: 168-176.
[7]E. G. Mima, C. E. Vergani, A. L. Machado, E. M. Massucato, A. L. Colombo, V. S. Bagnato, A. C. Pavarina, Comparison of Photodynamic Therapy versus conventional antifungal therapy for the treatment of denture stomatitis: a randomized clinical trial. Clin. Microbiol Infect, 2012; 18.10: E380-E388.
[8]T. Pereira-Cenci, A. A. Del Bel Cury, W. Crielaard, J. M. Ten Cate, Development of Candida-associated denture stomatitis: new insights. J. Appl Oral Sci, 2008; 16.2: 86-94.
[9]C Kerawala, C Newlands, eds, Oral and maxillofacial surgery. Oxford: Oxford University Press. 2010; 446-447
[10]A. Erdogan, S. S. Rao, Small intestinal fungal overgrowth. Curr Gastroenterol Rep, 2015; 17.4: 16.
[11]Y. H. Samaranayake and L. P. Samaranayake, Experimental Oral Candidiasis in Animal Models, Clin Microbiol Rev, 2001; 14: 398-429.
[12]C. Salerno, M. Pascale, M. Contaldo, V. Esposito, M. Busciolano, L. Milillo, A. Guida, M. Petruzzi, R. Serpico, Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal, 2011; 16: E139-143.
[13]J. R. Naglik, D. L. Moyes, B. Wächtler, B. Hube, Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect, 2011; 13: 963-976.
[14]A. A. Lattif and K. Swindell, History of Antifungals. 2009; 1-10.
[15]J. R. R. Pinto, M. F. Mesquita, G. E. P. Henriques, M. A. de Arruda Nóbilo, Effect of thermocycling on bond strength and elasticity of 4 long-term soft denture liners. J. Prosthet Dent, 2002; 88.5: 516-521.
[16]R.K. Aloul, C. Shen, The influence of plasticizer loss on the viscoelasticity of temporary soft liners. J. Prosthodont, 2002; 11.4: 254-62.
[17]D. W. Jones, E. J. Sutow, B. S. Graham, E. L. Milne, and D. E. Johnston, Influence of Plasticizer on Soft Polymer Gelation. J. Dent Res, 1986; 65: 634-642.
[18]H. Murata, H. Chimori, T. Hamada, and J. F. McCabe, Viscoelasticity of Dental Tissue Conditioners during the Sol-gel Transition. J. Dent Res, 2005; 84: 376-381.
[19]Y. A. M. Ueshige, K. T. Y. Sato, Y. Akagawa, and M. Ishii, Dynamic iscoelastic properties of antimicrobial tissue conditioners. J. Dent, 1999; 27: 517-522.
[20]K. S. Kim, H. S. Moon, J. S. Shim, & M. K. Jung, Changes of the surface roughness depending on immersion time and powder/liquid ratio of various tissue conditioners. J. Korean Acad Prosthodont, 2009; 47.2: 108-118.
[21]Y. Kulak, E. Kazazoglu, In vivo and in vitro study of fungal presence and growth on three tissue conditioning materials on implant supported complete denture wearers. J. Oral Rehabil, 1998; 25: 135-138.
[22]Y. S. DANGI, M. L. SONI, and K. P. NAMDEO, Oral Candidiasis: A Review. Int J. Pharmacy Pharm Sci, 2010; 2: 36-41.
[23]C. K. W. Chow, D. W. Matear, and H. P. Lawrence, Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology, 1999; 16: 110-118.
[24]L. M.A.O., L. P. Samaranayake, and P. J. Lamey, "Treatment of oral candidiasis," Int. J. Oral Maxillofac. Surg. 1991; 49: 996-1001.
[25]Ashley, E. S. D. 12 Pharmacology of Azole Antifungal Agents. Antifungal therapy, 2016; 199.
[26]L. J. Cross, J. Bagg, D. Wray, T. Aitchison, A comparison of fluconazole and itraconazole in the management of denture stomatitis a pilot study. J. Dent, 1998; 26: 657-664.

[27]J. F. Lima, J. G. Maciel, C. A. Arrais, V. C. Porto, V. M. Urban, K. H. Neppelenbroek, Effect of incorporating antifungals on the water sorption and solubility of interim resilient liners for denture base relining. J. Prosthet Dent, 2016; 115.5: 611-616.
[28]K. Y. Nam, In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J. Adv Prosthodont, 2011; 3.1: 20-24.
[29]T. Matsuura, Y. Abe, Y. Sato, K. Okamoto, M. Ueshige, Y. Akagawa, Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J. Dent, 1997; 25.5: 373-377.
[30]S. S. Mantri, R. D. Parkhedkar, & S. P. Mantri, Candida colonisation and the efficacy of chlorhexidine gluconate on soft silicone‐lined dentures of diabetic and non‐diabetic patients. Gerodontology, 2013; 30.4: 288-295.
[31]Z. Shi, K.G. Neoh, E.T. Kang, W. Wang, Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 2006; 27: 2440-2449.
[32]J. Meng, X. Zhang, Z. Tang, Y. Zhang, Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination, 2015; 359: 156-166.
[33]N. G. Schipper, S. Olsson, J. A. Hoogstraate, A. G. deBoer, K. M. Varum, P. Artursson, Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res, 1997; 14.7: 923-9.
[34]Robert G. Chitin Chemistry London. The Macmillan Press; 1992.
[35]R. Jayakumar, M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010; 55.7: 675-709.
[36]L. Sun, Y. Du, L. Fan, X. Chen, J. Yang, Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer, 2006; 47.6: 1796-1804.
[37]Nilsen-Nygaard, J., Strand, S. P., Vårum, K. M., Draget, K. I., & Nordgård, C. T. Chitosan: gels and interfacial properties. Polymer, 2015; 7.3: 552-579.
[38]Y. Abe, M. Ueshige, M. Takeuchi, M. Ishii, Y. Akagawa, Cytotoxicity of antimicrobial tissue conditioners containing silver-zeolite. Int J. Prosthodont, 2003; 16.2.
[39]M. Radnai, R. Whiley, T. Friel, P. S. Wright, Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology, 2010; 27: 292-296.
[40]S. Akanksha, et al. "Evaluation of the properties of a tissue conditioner containing origanum oil as an antifungal additive." Journal of Prosthetic Dentistry 2013; 110.4: 313-319.
[41]S. Sunanda, H. Veena. Comparative evaluation of antifungal activity of melaleuca oil and fluconazole when incorporated in tissue conditioner: an in vitro study. Journal of Prosthodontics, 2014; 23.5: 367-373.
[42]Alavarce, et al. The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: new approaches to denture stomatitis. Evidence-Based Complementary and Alternative Medicine, 2015.
[43]Jiang, Fuguang, et al. "N‐trimethylchitosan/Alginate Layer‐by‐Layer Self Assembly Coatings Act as “Fungal Repellents” to Prevent Biofilm Formation on Healthcare Materials." Advanced healthcare materials 2015; 4.3: 469-475.
[44]Song, Rong, Zhaohua Zhong, and Lexun Lin. "Evaluation of chitosan quaternary ammonium salt-modified resin denture base material." International journal of biological macromolecules 2016; 85: 102-110.
[45]C. H. Jou, , Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2, 3-propyl-N methyl-N, N-diallylammonium methyl sulfate. Colloids Surf B Biointerfaces., 2011; 88.1: 448-454.
[46]Hu D, Wang H, Wang L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT - Food Science and Technology, 2015; 65: 398-405.
[47]H. Wu, J. Zhang, B. Xiao, X. Zan, J. Gao, Y. Wan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan-poly(ɛ-caprolactone) copolymers and their antibacterial activity. Carbohydr. Polym, 2011; 83.2: 824-830.
[48]A. Ávila, K. Bierbrauer, G. Pucci, M. López-González, M. Strumia, Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of food engineering, 2012; 109.4: 752-761.
[49]L. Zhang, L. Wang, B. Guo, P. X. Ma, Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym, 2014; 103: 110-118.
[50]EN ISO 10139-2:2016 Dentistry—Soft Lining Materials for Removable Dentures— Part 2: Materials for Long-Term Use, 2016.
[51]H. Murata, H. Chimori, T. Hamada, J. F. McCabe, Viscoelasticity of dental tissue conditioners during the sol-gel transition. J. Dent Res, 2005; 84.4: 376-381.
[52]ASTM D638-03, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2003
[53]A. Mese, K. G. Guzel, Effect of storage duration on the hardness and tensile bond strength of silicone-and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. J. Prosthet Dent, 2008; 99.2: 153-159.
[54]M. M. Hassan, Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: assessment of mechanical, antibacterial and antifungal properties. RSC Advances, 2015; 5.45: 35497-35505.
[55]Song, H. Synthesis and application of cationic starch graft polymer by using the complex initiation system. Carbohydr. Polym, 2010; 82.3: 768-771.
[56]Z. X. Peng, L. Wang, L. Du, S. R. Guo, X. Q. Wang, T. T. Tang, Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr. Polym, 2010; 81.2: 275-283.
[57]T. C. Yang, K. C. Cheng, C. C. Huang, B. S. Lee, Development of new tissue conditioner using acetyl tributyl citrate and novel hyperbranched polyester to improve viscoelastic stability. Dent. Mater, 2015; 31.6: 695-701.

電子全文 電子全文(網際網路公開日期:20230213)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔